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Abstract: A global epidemiological shift has been observed in recent decades, characterized by
an increase in age-related disorders, notably non-communicable chronic diseases, such as type 2
diabetes mellitus, cardiovascular and neurodegenerative diseases, and cancer. An appreciable causal
link between changes in the gut microbiota and the onset of these maladies has been recognized,
offering an avenue for effective management. Kefir, a probiotic-enriched fermented food, has gained
significance in this setting due to its promising resource for the development of functional or value-
added food formulations and its ability to reshape gut microbial composition. This has led to
increasing commercial interest worldwide as it presents a natural beverage replete with health-
promoting microbes and several bioactive compounds. Given the substantial role of the gut microbiota
in human health and the etiology of several diseases, we conducted a comprehensive synthesis
covering a total of 33 investigations involving experimental animal models, aimed to elucidate the
regulatory influence of bioactive compounds present in kefir on gut microbiota and their potential in
promoting optimal health. This review underscores the outstanding nutritional properties of kefir
as a central repository of bioactive compounds encompassing micronutrients and amino acids and
delineates their regulatory effects at deficient, adequate, and supra-nutritional intakes on the gut
microbiota and their broader physiological consequences. Furthermore, an investigation of putative
mechanisms that govern the regulatory effects of kefir on the gut microbiota and its connections with
various human diseases was discussed, along with potential applications in the food industry.

Keywords: kefir; micronutrient; diabetes; nutrients; probiotics

1. Introduction

The global population of individuals aged 65 and older is anticipated to increase
significantly, from 10% in 2022 to 16% by 2050, reflecting an ongoing and rapid global aging
phenomenon [1]. This accelerated trend in life expectancy presents substantial challenges
to both public health and socioeconomic systems. As individuals age, they become more
susceptible to non-communicable diseases such as type 2 diabetes (T2D), cardiovascular ill-
nesses, cancer, and neurodegenerative conditions [2], necessitating continuous monitoring
and medical intervention.

Several interventions including dietary changes, physical activity, metformin, nicoti-
namide adenine dinucleotide (NAD+) precursors, sirtuin agonists, senescence-associated
secretory phenotype (SASP) inhibitors, and senolytics are currently being developed to tar-
get underlying aging mechanisms with the potential to impact multiple fundamental aging
pathways [3]. These all have a significant impact on the makeup of the gut microbiome, as
do the changes in lifestyle choices that follow, such as a reduction in the quality of food
and physical activity and an increase in drug use, which have been linked to the onset of
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age-related disorders [4–6]. Thus, one of the most important treatment approaches might
be to alter the microbiome through food to slow down the physiological deterioration that
comes with age [7]. The consumption of dietary components may either feed or restrict the
growth of specific members of the gut microbial population, making nutrition a significant
regulator of the microbiome [8].

Kefir is a fermented milk beverage produced by the synergistic action of bacteria and
yeasts contained in kefir grains that have an inert matrix of polysaccharides and proteins
and are home to a diverse range of microorganisms, including lactic acid bacteria (LAB),
acetic acid bacteria, and yeasts [9,10]. The intricate interactions of these multiple microbes,
as well as several bioactive substances produced by their metabolic processes, contribute
to kefir’s reputation as a natural probiotic [9,11–14]. The microbial composition of kefir
can vary based on factors like geographical origin, fermentation duration, substrate, and
processing methods, yet kefir grains consistently maintain a relatively stable and distinctive
microbiota, often characterized by the prevalence of specific Lactobacillus species [15].

The interplay between diet and gut microbiota has a major impact on species abun-
dance, diversity, and overall influence on human health [16]. As a result, an in-depth
investigation of the impacts of kefir’s bioactive compounds on the gut microbiota is re-
quired, which will contribute to a better understanding of the underlying processes driving
kefir’s role in human health. In this perspective, we discussed 33 studies from 2012 to
2024 that investigate the impact of kefir’s bioactive compounds on the gut microbiota
and metabolic physiology under deficient and supplemented conditions and, in addition,
extended this discussion to age-related diseases.

2. Gut Microbiota Changes with Age

Microorganisms that make up the intestinal microbiota may exist in two states: bal-
anced or unbalanced. The microbiota in the first situation, known as eubiosis, is flexible
enough to maintain its equilibrium by tolerating minor changes in the environment, the
diet, or the water drunk. However, instances of significant changes, such as the translo-
cation or expansion of a particular bacterial group, colonization by pathogenic bacteria,
the use of antibiotics, and alterations in lifestyle, result in imbalance or dysbiosis [17,18].
Since the microbiota is primarily governed by physiology, the relative abundance of some
microbes is affected by age-related changes in intestinal physiology with respect to the
host’s diet, lifestyle, and medications [19,20].

Mucin, for example, functions as a protective barrier in the gastrointestinal system, pre-
venting direct contact between microbes and epithelial cells. Nonetheless, in mice, mucin
production declines with age, resulting in a thinner and less uniform mucus coating. Differ-
ent microbial strains, such as those in the Clostridiaceae, Akkermansiaceae, Bifidobacteriaceae,
and Bacteroidaceae families, all display age-related alterations and use mucin as a nutri-
ent [21]. Although the role of mucin-metabolizing microbes like Akkermansia muciniphila,
Bacteriodes fragilis, Bacteroides vulgatus, Bifidobacterium spp., and Prevotella spp. in mucin
layer degradation with age remains unclear, Bacteroides spp. and A. muciniphila increase in
centenarians, hence implying potential benefits [22]. As a result, probiotic-enriched foods
or supplementation with certain strains may improve age-related mucin loss, as well as
good benefits on health, immunity, and lifespan [23]. Increased amounts of short-chain
fatty acids (SCFAs) produced as byproducts by the gut microbiota during the fermentation
of partly and non-digestible polysaccharides resulted in a decrease in colon pH, which
contributed to the enhancement of the intestinal barrier [24,25].

However, as the protective mucin layer in the digestive system deteriorates, microbes
that typically would not contact the epithelial layer can now potentially trigger inflamma-
tory responses [6,26]. Consequently, aging, as well as the chronic health and metabolic
disorders that come with it, is marked by a rise in low-grade, chronic inflammation [6].
Therefore, enhancing the preservation of intestinal physiology in model organisms can
mitigate age-related alterations, ultimately minimizing microbial dysbiosis and extending
lifespan [27].
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The intestinal microbiota has an impact on the operation of several organs, includ-
ing the heart, brain, liver, pancreas, and gut, and its regulation may be a crucial step
in the treatment of illnesses and the preservation of health since the intestinal micro-
biota also plays a role in the development and maturation of organs and physiological
systems [28,29]. Increased intestinal permeability relates to an imbalance between Fir-
micutes and Bacteroidetes, which permits bacterial byproducts to penetrate and induce
inflammatory reactions associated with diabetes and other metabolic disease [30]. LPS from
Gram-negative bacteria induces insulin resistance and impairs insulin signaling in a variety
of organs, including muscle, adipose tissue, liver, and the hypothalamus, via activation of
NF-kB and JNK pathways. Additionally, LPS activates toll-like receptors, triggering the
production of inflammatory cytokines, thereby activating the immune system [31,32].

3. Kefir: Composition and Nutritional Profile
3.1. Occurrence

Kefir is a fermented beverage made from kefir grains and milk or water that is acidic,
frothy, and low in alcohol [33,34]. Its origins may be found in the Caucasus, Eastern Eu-
rope, and the Balkans, and due to its beneficial health effects, its consumption has spread
worldwide throughout time [35]. People in nations like the United States of America,
Japan, France, and Brazil have become accustomed to drinking this sour, viscous bever-
age [36]. The distinctive quality of its starter, the kefir grains, is how kefir differs from other
fermented foods.

Kefir grains are irregularly shaped and lobed, ranging from white to light yellow [37].
They are 1 to 4 cm long and resemble miniature cauliflower florets. Lactic acid bacteria
(LAB), yeasts, and acetic acid bacteria (AAB) coexist in symbiotic association inside the nat-
ural matrix of exopolysaccharides (EPS), kefiran, and proteins that make up this gelatinous
and slimy structure [34]. The use of kefir beverages has been linked to significant health
advantages, including improved lactose digestion, anti-carcinogenic, anti-hypertensive,
and anti-diabetic effects [38–40]. The kefir bacteria, their interactions, and their metabolic
products throughout the fermentation process are responsible for all these health-promoting
qualities [34].

3.2. Microbial Diversity

Lactic acid bacteria, acetic bacteria, yeasts, and fungi are the most prevalent microbial
species in kefir grains, among other complicated microbial species [41], and have been
divided into four groups: homo- and heterofermentative as well as lactose- and non-
lactose-assimilating yeasts [42]. Lactobacillus kefiranofaciens, Lacticaseibacillus paracasei (also
known as Lactobacillus paracasei), Lactiplantibacillus plantarum (also known as Lactobacillus
plantarum), Lactobacillus acidophilus, and Lactobacillus delbrueckii subsp. bulgaricus are the
most prevalent bacterial species found in kefir grains, while the main yeast species found
in kefir are Saccharomyces cerevisiae, S. unisporus, Candida kefyr, and Kluyveromyces marxianus
subsp. marxianus [35].

According to the geographic origin of the kefir grains, which is inextricably linked to
the climatic conditions, the microbiota of the kefir grains may vary [43]. In actuality, the ratio
of kefir grains to substrate, fermentation period, temperature, and degree of agitation are all
factors that might affect the microbiota composition and nutritional content of kefir [44,45].
Although some significant Lactobacillus species always occur due to their probiotic strain-
specific capabilities, it is acknowledged that this microbial diversity is responsible for the
physicochemical characteristics and biological activities of each kefir [44,46].

3.3. Macronutrients and Micronutrients

Kefir contains high concentrations of essential vitamins (>20%) such as thiamin (B1),
riboflavin (B2), pantothenic acid (B5), folic acid (B9), ascorbic acid (C), retinol (A), and
phylloquinone (K); essential amino acids (70–376 mg/100 g) like serine, threonine, alanine,
lysine, valine, isoleucine, methionine, phenylalanine, and tryptophan; macro elements such
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as potassium (1.65%), calcium (0.86%), phosphorus (1.45%), and magnesium (0.30%); and
microelements including zinc (92.7), copper (7.32 mg/kg), iron (20.3 mg/kg), manganese
(13.0 mg/kg), cobalt (0.16 mg/kg), and molybdenum (0.33 mg/kg), respectively [47–51].
Recently, GCMS analysis showed the presence of alkaloids, phenols, esters, fatty acids,
steroids (cholesterol and ergosterol), polyalkenes, heterocyclic compounds, and aromatic
aldehydes [52].

Many of these compounds have different absorption rates in the brain and may enter
as rapidly as glucose to affect metabolic processes. For example, since essential amino acids
cannot be synthesized by the brain, they must be supplied from protein breakdown and diet.
Hence, these components are essential for controlling energy balance, serving as precursors
to neurotransmitters synthesized in the brain, supporting metabolic activities, enhancing
immunomodulation, and fostering homeostasis [53]. Kefiran, a microbial polysaccharide
from kefir grains, aids in the mental recovery of individuals with severe traumatic brain
injuries and lengthens the healthy lifetime of the elderly [54,55]. Using database mining
approaches, we revealed that kefiran binds to different protein targets that may partake in
several molecular events (Figure 1). Hence, kefir is suggested to exert control of organism
homeostasis through a direct impact on the gut–brain axis [17].
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Figure 1. (A) Two-dimensional (2D) structure of Kefiran (PubChem CID 90908346). (B) Potential 
roles of Kefiran on different disease phenotypes using network analysis. Kefiran–protein interaction 
generated from BindingDB [56] and gene–disease association curated from DisGeNet [57]. 
Integrated biomolecular interaction was created using Cytoscape [58] and STRING.db [59]. Target 
genes are listed as follows: Abl1, non-receptor tyrosine kinase; ca2, carbonic anhydrase II; cdk2, 
cyclin-dependent kinase 2; cdk1, cyclin-dependent kinase; fgf1, fibroblast growth factor 1; fgf2, 
fibroblast growth factor 2; hdac, histone deacetylase; atp1b1, ATPase Na+/K+ transporting subunit 
beta 1; vegfc, vascular endothelial growth factor C. 

Numerous studies have been conducted to investigate the modulatory effects of these 
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Figure 1. (A) Two-dimensional (2D) structure of Kefiran (PubChem CID 90908346). (B) Potential
roles of Kefiran on different disease phenotypes using network analysis. Kefiran–protein interaction
generated from BindingDB [56] and gene–disease association curated from DisGeNet [57]. Inte-
grated biomolecular interaction was created using Cytoscape [58] and STRING.db [59]. Target genes
are listed as follows: Abl1, non-receptor tyrosine kinase; ca2, carbonic anhydrase II; cdk2, cyclin-
dependent kinase 2; cdk1, cyclin-dependent kinase; fgf1, fibroblast growth factor 1; fgf2, fibroblast
growth factor 2; hdac, histone deacetylase; atp1b1, ATPase Na+/K+ transporting subunit beta 1;
vegfc, vascular endothelial growth factor C.

Numerous studies have been conducted to investigate the modulatory effects of these
bioactive substances on the gut microbiota in experimental animal models, as well as the
resulting metabolic implications. Table 1 summarizes pertinent information about the
experimental models, designs used, and results obtained from the research.
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Table 1. Roles of kefir bioactive constituents on gut microbiota and physiological parameters in both health and disease conditions.

Bioactive
Compounds Research Design Experimental Model Methods Gut Microbiota Alteration Physiological Effect Ref.

Retinol
(vitamin A)

Supplementation:
5000 IU retinyl

acetate for 10 days

7-week-old male
57BL/6Cnc mice with

ulcerative colitis

16S rRNA gene
sequencing; qPCR;

TRACE 1310-ISQ LT
GC-MS system

Abundant gut microbial diversity
and flora composition; decrease in

Bacteroides, Parabacteroides,
Escherichia/Shigella, Klebsiella,

Oscillibacter, Pseudolavonifractor,
Clostridium sensu stricto,

Butyrimimonas, Mucispirllum, and
Clostridium XIVb; increased
abundance of Akkermansia,
Lactobacillus, Prevotella, and

Aerococcus

Significant increase in SCFAs: acetic acid, butyric
acid, propionic acid, valeric acid, isobutyric acid,
and isovaleric acid except caproic acid (p < 0.05);
significant increase in mRNA expression of Muc1,
Muc4, ZO-1, occludin, and IL-10 (p < 0.05); mRNA
expression of IL-6, IL-1β, and TNF-α and serum

levels of LPS, TNF-α, IL-6, and IL-1β
significantly reduced (p < 0.05)

[60]

Supplementation:
25 IU/g for
16 weeks

3-week-old male
C57BL/6J mice with

neuronal and cognitive
alterations

16S rRNA gene
sequencing; qPCR; NMR;
HPLC; LC-ESI-MS/MS;

Varian 3500 GC
flame-ionization system

Increased the abundance of
Lachnospiraceae,

Porphyromonadaceae,
Mycoplasmataceae, and

Subdoligranulum; decrease in RC9

Significant reduction in weight gain, fat mass,
leptin, and insulin without any significant

change in SCFA and BCFA (p < 0.05); similarly,
no significant effect on the expression of genes
coding for proteins involved in GC signaling,

namely GC receptors, mineralocorticoid
receptors, and 11β-Hsd1enzyme, responsible for

the local production of active GC; prevented
recognition memory deficits

[61]

Deficiency VA
Knockout model

7-week-old male
C57BL/6J mice with
altered metabolism

16S rRNA gene
sequencing; qPCR;
proton (1H) NMR

Significantly lower abundance of
Bacteroidetes, Bacteroidia,

Pseudomonadaceae,
Clostridium_XVIII, Roseburia,

Blautia, Pseudomonas,
Parabacteroides; Increased

Firmicutes/Bacteriodes ratio,
Johnsonella, and Staphylococcaceae

(p < 0.05)

Increased acetate, significantly higher levels of
lactate and glucose in serum and liver; decreased

butyrate levels; glucose clearance was slower;
increased level of carbohydrate, lower lipid, and
amino acids (BCAA) levels; hyperglycemic state

induction and increased protein metabolism

[62]
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Table 1. Cont.

Bioactive
Compounds Research Design Experimental Model Methods Gut Microbiota Alteration Physiological Effect Ref.

Deficiency: VA <
120 IU/kg for

45 weeks

8-week-old male
C57BL/6J APP/PS1
transgenic mice with
Alzheimer’s disease

16S rRNA gene
sequencing; RP-HPLC;

qPCR

Enrichment in pro-AD pro-AD
Clostridia and decreased abundance of

anti-AD Lactobacillus

VA deprivation resulted in increased
deposition of Aβ plaque (Aβ40 and Aβ42)

and increased expression of BACE1 and
p-Tau (p < 0.05); downregulation of

GABAAα2, GABAB1b, and BDNF in the
cortex and hippocampus (p < 0.05);

decreased mRNA expression of RARγ,
RALDH1, RXRα, RXRβ, RXRγ, and

CYP26B1 genes in the cortex (p < 0.05)

[63]

Deficiency: VA
300 IU/Kg for

4 weeks

3-week-old female
Sprague–Dawley rats;
impairment of colonic

epithelial barrier
integrity

16s rRNA gene
sequencing; qRT-PCR;

HPLC; GC-MS

Predominant phyla: Firmicutes
(60.25%), Verrucomicrobiota (14.47%),
Bacteroidota (13.74%), Proteobacteria
(9.26%), Actinobacteriota (1.14%), and

Desulfobacterota (0.88%);
Family: decreased relative abundances

of Peptostreptococcaceae,
Erysipelotrichaceae, Coriobacteriaceae,

Eggerthellaceae, and Staphylococcaceae
while there is an increased relative

abundance of Bacteroidaceae,
Streptococcaceae, Butyricicoccaceae, and

Actinomycetaceae (p < 0.05)
Genus: decreased relative abundances

of Romboutsia, Collinsella,
norank_F_Erysipelotrichaceae, and

Allobaculum while there is an increased
relative abundance of Bacteroides,

norank_f_Oscillospiraceae,
Lachnospiraceae_NK4A136_group,
Colidextribacter, and Streptococcus

(p < 0.05)

Reduced weight (p < 0.001); shorter lengths
and looser fibrils of desmosome junctions

(p < 0.05); increased level of DAO (p < 0.05),
evidence of a leaky gut; decreased

expression of CEACAM1; increased
HDAC1 and HDAC3 expression (p < 0.05)

[64]
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Table 1. Cont.

Bioactive
Compounds Research Design Experimental Model Methods Gut Microbiota Alteration Physiological Effect Ref.

Folic acid
(vitamin B9)

Supplementation:
folic acid

5 mg/kg/day for
8 weeks

Six-week-old male
Sprague–Dawley rats

with HFD-induced
steatohepatitis

16S rRNA
sequencing; qPCR

Increased levels of Bacteroidetes,
Pseudomonadaceae, and Leptotrichiaceae

No effect on body weight; reduced hepatic
lipid accumulation, ballooning

degeneration, inflammatory infiltration,
and severe fibrosis (p < 0.05); reduced
expressions of αSMA, TGF-β1, Col1a1,

Col2a1, and Col3a1 (p < 0.05); significant
reduction in ALT, AST, FBG, TG, TC, LDL,

TBA, and Hcy (p < 0.05); no significant
change in HDL; downregulation of mRNA

expression levels of SREBP1c, SCD,
ACACA, and FASN (p < 0.01) and

upregulation of PPARγ, ACADL, FABP1,
CPT1α, and FATP2 (p < 0.01); decreased
expression of pro-inflammatory proteins
TNF-α, IL-6, IL-1β, and CCR2 (p < 0.05)

[65]

Supplementation:
84 µg/kg folic acid
per day for 8 weeks

2-month-old
Sprague–Dawley male

rats with hyperuricemia

16S rRNA gene
sequencing

Increased abundance of Actinobacteria,
Lactobacillus, Bacteroides, Collinsella, and

Blautia; decreased abundance of Clostridium,
Romboutsia, Norank-f-Lachnospiraceae, and

Ruminococcus

Decreased levels of serum uric acid levels
(p < 0.01), and adenosine deaminase and

xanthine oxidase (p < 0.05)
[66]
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Table 1. Cont.

Bioactive
Compounds Research Design Experimental Model Methods Gut Microbiota Alteration Physiological Effect Ref.

Supplementation:
folic acid 5 mg/kg

for 25 weeks

3- to 4-week-old male
C57BL/6J conventional
(CV) and germ-free (GF)
mice with HFD-induced

obesity

16S rRNA gene
sequencing; qPCR;

HPLC-MS/MS

Decreased abundance of
unclassified_f_Lachnospiraceae, un

classified_g_norank_f_Oscillospiraceae, unclas-
sified_g_Lachnospiraceae_NK4A136_group,

uncul-
tured_bacterium_g_norank_f_Oscillospiraceae,

uncul-
tured_bacterium_g_norank_f_Lachnospiraceae,

uncultured_bacterium_g_Oscillibacter,
uncultured_bacterium_g_Bilophila,
uncultured_bacterium_g_Roseburia,

uncultured_bacterium_g_UCG-009, and
uncultured_bacterium_g_Tuzzerella;

increased abundance of uncul-
tured_bacterium_g_norank_f_Muribaculaceae,
Ileibacterium_valens, Akkermansia_muciniphila,
uncultured_bacterium_g_Dubosiella, uncul-
tured_bacterium_g_Coriobacteriaceae_UCG-

002,
unclassi-

fied_g_norank_f_norank_o_Clostridia_UCG-
014, uncultured_Clostridiales_bacterium_
g_norank_f_Oscillospiraceae, and unclassi-

fied_g_Rikenellaceae_RC9_gut_group;
reduction in fecal dysbiosis

Reduced weight gain; reduced plasma level
of BCAAs (valine, isoleucine, and leucine,

p < 0.05); mRNA levels of Bcat2, Bckdha,
and/or Ppm1k were increased in adipose

tissues but decreased in the liver (p < 0.05);
increased mRNA levels of mitochondrial

biogenesis genes: Pgc-1a, Cox1, Nd1 or Nd6
(p < 0.05);

[67]

Supplementation:
5.0 mg/kg/day

folic acid for
10 weeks

7-week-old male
C57BL/6J mice with
alcohol-induced liver

damage

16S rRNA gene
sequencing

Increased relative abundance of
Verrucomicrobiota and Proteobacteria,
Lachnospiraceae_NK4A136_group, and

Akkermansia

Reduced levels of ALT, AST, TG, and LPS,
and inflammatory cytokines, IL-1β, IL-6,
and TNF-α while tight junction proteins

ZO-1, claudin 1, and occludin significantly
increased (p < 0.05); reduced expression of

TLR4, MyD88, IRAK1, TRAF6,
p-IκBα/IκBα, and NF-κB (p < 0.05)

[68]
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Table 1. Cont.

Bioactive
Compounds Research Design Experimental Model Methods Gut Microbiota Alteration Physiological Effect Ref.

Supplementation:
three doses of folic

acid (10, 80, or
150 µg/kg/day)

for 7 days

6-week-old male
Sprague–Dawley (SD)

rats with chronic visceral
hyperalgesia/IBD

16S rRNA gene
sequencing

For all doses: reduced I number
without affecting α-diversity

(p > 0.05); decreased abundance of
Clostridiales (p < 0.05); reduced

H2S concentration (80 µg/kg;
p < 0.001)

Attenuation of chronic visceral pain; frequency of
sEPSCs of neurons in the spinal dorsal horn

significantly reduced (p < 0.05); overall reduction in
spontaneous glutamatergic synaptic activity of SG

neurons

[69]

Supplementation:
2.5 mg/kg/day

and 5 mg/kg/day
folic acid (L-FA) for

10 weeks

7-week-old male
C57BL/6J mice with

hyperuricemia

16S rRNA gene
sequencing

Decreased relative abundance of
Firmicutes while Bacteroidetes
was not significantly changed;

increased Lactobacillus and
Lactococcus (p < 0.05)

High-dose FA restored expression of GLUT9, ABCG2,
α-SMA, and E-cad (p < 0.05) and increased protein

expression levels of Claudin-1, Occludin, ZO-1, and
SCFAs (acetic acid and propionic acid) (p < 0.05);

reversed elevated levels of TNFα, IL-1β, IL-6, TLR4,
MYD88, and p-IκB and LPS (p < 0.05)

[70]

Serine

Supplementation:
40 mg/kg body

weight, once orally
for 7 days

9-week-old male
C57BL/6 mice with

acute colitis

16S rRNA gene
sequencing

No significant difference in alpha
diversity; increased relative

abundance of Firmicutes,
Clostridia, and Bacteroidia

Reversed weight loss; no significant change in colon
length, colon weight, and length/weight ratio of colon

but significant decrease in disease activity index
(p > 0.05); increased levels of IgA, IgG, and IgM;

decreased IL-1β, IL-6, TNF-α, MPO, and EPO levels
(p > 0.05)

[71]

Deficiency:
L-serine deficient

diet (∆Ser,
TD.140546) for

3 days

6- to 12-week-old female
and male SPF C57BL/6

mice, and GF Swiss
Webster mice with IBD

qPCR; 16S rRNA
gene sequencing

Increased relative abundances of
Verrucomicrobiaceae (and A.

muciniphila) and Enterobacteriaceae
(and E. coli), while Sutterellaceae

and Porphyromonadaceae were
decreased

Reduced body weight and increased colon
inflammation; degradation of mucus layer; increased

intestinal permeability
[72]

Deficiency: serine-
and

glycine-deficient
(SGD) diet for

2 months

9-week-old male
C57BL/6J mice with

inflammation and
oxidative stress

16S rRNA gene
sequencing;

RT-qPCR

Significant decrease in Firmicutes
to Bacteroidetes ratio, and relative

abundance of Clostridium XIVa
was further decreased

Increased accumulation of advanced glycation end
products, and MDA; high serum levels of TNF-α,

IL-1β, and IL-6; levels of SOD, CAT, GSH-Px, and GSH
were significantly reduced (p < 0.05); increased mRNA
levels of TNF-α, IL-1β, and IL-6, while Cat, Sod1, Sod2,

and Gpx1 were decreased (p < 0.05); a significant
decrease in butyric acid but not change in acetate or
propionate levels (p < 0.05); a significant decrease in
mRNA expression of Slc16a3, Slc16a7, and Gpr109a

(p < 0.05); increased pNF-kB, and decreased pAMPK
(p < 0.05)

[73]
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Table 1. Cont.

Bioactive
Compounds Research Design Experimental

Model Methods Gut Microbiota Alteration Physiological Effect Ref.

Methionine

Dietary methionine
restriction (MR) at

0% or 80% for
16 weeks

8-month-old male
C57BL/6J mice

with age-related or
HFD-induced

diseases

16S rRNA gene
sequencing; RT-qPCR

Increased relative abundance of
Firmicutes and decreased

Proteobacteria and Verrucomicrobia by
either MR0 or MR80; MR80 showed an

increased relative abundance of
Bacteroides, Faecalibaculum,

Corynebacterium, and Roseburia while
Desulfovibrio, Lachnospiraceae,

Akkermansia, Lachnoclostridium,
Oscillibacter, Ruminiclostridium, and

Escherichia−Shigella decreased (p < 0.05)

MR80 reduced body weight and IWAT (p < 0.05);
increased levels of acetic, butyric, and propionic

acid (p < 0.05); reduced serum LPS and LBP
(p < 0.05); reduced serum and ileal TNF-α, IL-6,
IL-1β, and IL-10 (p < 0.05); increased claudin-3,

occludin, and ZO-1 (p < 0.05)

[74]

Dietary methionine
restriction (MRD)

at 0.86% for
22 weeks

4-week-old male
C57BL/6J mice

with HFD-induced
obesity

16S rRNA gene
sequencing; qPCR; 1H
NMR; GC-MS-QP2010

Significant increase in the relative
abundance of Firmicutes (p < 0.05), and
Firmicutes/Bacteroides ratio (p < 0.01);
reduction in Verrucomicrobia (p < 0.05);

MRD showed enrichment in
Allobaculum, Bacteroides, Oscillospira,
Bifidobacterium, Sutterella, Roseburia,

Lactobacillus, Bilophila, and
Stenotrophomonas at the genus level;

increased relative abundance of
Bacteroides, Bifidobacterium, Oscillospira,

Ruminococcus, Coprococcus,
Corynebacterium, Lactobacillus, and
Roseburia while Akkermansia and

Desulfovibrio were reduced (p < 0.05)

Significant decrease in body weight, food intake,
blood glucose, plasma TG, TC, FFA, and LDL-c
while HDL-c was increased (p < 0.05); increased

levels of SCFAs such as formate, acetate,
propionate, butyrate, lactate, pyruvate, succinate,
α-keto-β-methyl-valerate, α-ketoisovalerate;
increase in amino acid-related metabolites,
4-hydroxyphenylactate, and histidine and

decreased levels of isoleucine, valine, glycine,
tyrosine, urocanate, methionine; bile

acids-related metabolites such as bile acids and
taurocholic acid were increased while taurine

was decreased; carbohydrate-related metabolites
including β-glucose, α-glucose, α-xylose, and
α-galactose were decreased; other metabolites

like xanthine, trimethylamine, and ethanol were
also reduced; (p < 0.05); significant increase in

ileum and colon GSH-Px, GSH/GSSG, and
T-AOC levels (p < 0.05); decreased plasma LPS,
LBP, TNF-α, IL-6, colonic mRNA expression of

CD14 and TLR4, and LBP, MyD88, NF-κB, TNF-α,
and IL-6 in colon and ileum (p < 0.05); increased
colonic and ileal tight junction proteins claudin-3,
ZO-1, and occludin mRNA expression (p < 0.05)
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Table 1. Cont.

Bioactive
Compounds Research Design Experimental Model Methods Gut Microbiota Alteration Physiological Effect Ref.

Tryptophan

Dietary tryptophan
restriction: 10%
(10TRP), 40%

(40TRP), and 70%
(70TRP) for 21 days

3-week-old male
obesity-prone rats

(OP-CD, Strain 463)
qPCR; TD-NMR;

No significant change with 70TRP;
40TRP and 10TRP showed a
reduction in gene copies of

Enterobacteriaceae and Lactobacillus
but increased Roseburia; all TRP
diets reduced 16S rRNA gene

copies of Bacteroides and
Clostridium coccoides; tryptophan

restriction did not affect
Bifidobacterium spp., Clostridium

leptum, and Clostridium perfringens

Decreased food intake, energy expenditure, body
weight, fat mass, lean mass, fasting blood

glucose, plasma insulin, leptin, C-peptide and
increased plasma glucagon, GLP-1, QUICKI, and

pancreatic polypeptide by 40TRP and 10TRP;
10TRP increased plasma amylin and ghrelin;

70TRP and 40TRP increased plasma PYY without
plasma GIP change (p < 0.05)

[75]

Dietary tryptophan
restriction deficient:

0.1%,
recommended:
0.2%, and high:
1.25% diets for

8 weeks

20-month-old male
C57BL/6 mice with

systemic inflammation
and gut dysbiosis

16S rRNA gene
sequencing

High-dose TRP restored a relative
abundance of Proteobacteria,

Deferribacteres, Mucispirillum,
and Lachnospiraceae that were

reduced by low TRP while the
increased abundance of

Acetatifactor, Enterorhabdus, and
Adlercreutzi was decreased with

high TRP

Elevated serum levels of IL-6, IL-1a, and IL-17a,
and decreased IL-27 by TRP-deficient diet

compared to TRP-rich diets (p < 0.05)
[76]

Dietary tryptophan
supplementation:

200 mg/kg
tryptophan for

2 weeks

6- to 8-week-old male
BALB/c mice with

Intestinal inflammation

16S rRNA sequencing;
RT-qPCR; qPCR

Reduced
Firmicutes/Bacteroidetes ratio; a

high proportion of
Clostridiales_un-Classified,

Acetivibrio, Cetobacterium, and low
Enterobacter, Pantoea, and

Chromohalobacter

Decreased expression of ileum IL-1β, TNF-α,
IL-17, iNOS, and p-p65; elevated levels of IκBα;

restoration of mRNA expression levels of
α-defensin 5, Reg3b, Reg3g, mucin 2 and trefoil
factor 3, and goblet cell differentiation factors

Krüppel-like factor 4 and Ets-Domain
Transcription Factor; reduced Beclin1 and

LC3B-II: I ratio, p-AMPK, SIRT1, p-mTOR, and
p-p70s6k and increased expression of SQSTM1

(p < 0.05)

[77]
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Table 1. Cont.

Bioactive
Compounds Research Design Experimental Model Methods Gut Microbiota Alteration Physiological Effect Ref.

Dietary tryptophan
restriction (95%
reduction) for

12 weeks

16-week-old DNA-repair
deficient,

premature-aged mice
(Ercc1−/∆7; 20-wk life
span); premature aging

16S rRNA gene
sequencing

Increased microbial diversity and
abundances of Bacteroidetes RC9

and Clostridiales; reduced
proportion of Alistipes and

Akkermansia spp. correlates with a
decrease in the number of B-cell

precursors; gut microbiota
composition restored from aging
phenotype to younger WT mice

Reduced body and spleen weight (p < 0.001);
reduced frequencies of B lineage cells within

total bone marrow cells and total B lineage cells;
overall decrease in B-cell frequencies in

mesenteric lymph node and spleen (p < 0.01);
neutrophil numbers unaffected in bone marrow

(p < 0.05); however, a significant reduction in
splenic neutrophil and monocyte numbers

(p < 0.05)

[78]

Iron

Iron deficiency and
repletion:

Fe-deficient diet for
24 days, repleted
for 13 days with

FeSO4 or
electrolytic Fe at 10

and 20 mg Fe
kg/diet; a total of

37 days

21-day-old male
Sprague–Dawley rats TGGE and qPCR

Fe-deficient group: decreased
Bacteroides spp. and Roseburia spp.
while Enterobacteriaceae increased;

Fe-repletion reversed the trend
and Lactobacil-

lus/Pediococcus/Leuconostoc spp.
significantly decreased to baseline

levels (p < 0.05)

Fe deficiency resulted in reduced weight gain
and food intake, cecal butyrate (−87%) and

propionate (−72%) levels (p < 0.05); repletion
restored and increased cecal butyrate, and
neutrophil infiltration in colonic mucosa

(p < 0.01)

[79]

Iron depletion for
12 weeks (2·9 mg
Fe/kg diet) and

repletion for
4 weeks (35 and

70 mg Fe/kg diet)

8-week-old female
Fischer 344 rats

qPCR and
pyrosequencing; HPLC

Low relative abundance of
Bilophila spp. and Coprococcus spp.;

35 ppm Fe-supplemented rats
have higher Bacteroides spp.,

Clostridium cluster IV, F. prausnitzii,
E. hallii, and sulfate-reducing

bacteria than Fe-deficient rats; no
significant change between 70

ppm supplementation and
Fe-deficient rats

Significant increase in acetate and propionate
concentrations, and Fermentative metabolites by

35 and 70 ppm Fe-supplementation with
butyrate increasing significantly by 35 ppm

[80]
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Table 1. Cont.

Bioactive
Compounds Research Design Experimental Model Methods Gut Microbiota Alteration Physiological Effect Ref.

Iron-deficient
(<10 ppm iron/kg
diet); control (35

ppm iron/kg diet);
iron supplemented

diets (200 ppm
iron/kg) diet for

4 weeks

8- to 14-week-old WT
129S6/SvEV and
colitis-susceptible

interleukin-10-deficient
(Il10−/−) mice; IBD
associated intestinal

microbiota

qPCR; 16S rRNA
sequencing

The relative abundance of
Proteobacteria, Enterobacteriaceae,
and Escherichia coli was increased
by low Fe and control compared

to high Fe diet

High Fe showed reduced colitis based on clinical
disease activity and histological inflammation;
while high and low Fe decreased colonic and
serum IL-12 p40 compared to control; modest

reduction of colitis by high and low Fe

[81]

Supplementation:
chow diets

containing 100, 200,
or 400 ppm iron for

8 or 10 days

8- to 9-week-old Female
C57BL/6 mice with
DSS-induced colitis

16S rRNA gene
sequencing

400 ppm reduced species richness,
with a significant increase in

Proteobacteria and Actinobacteria
and a decrease in Bacteroidetes

and Firmicutes

Significant reduction in body weight at 100 ppm
(p < 0.01) while fecal calprotectin levels increased
for 100 (p < 0.05) and 400 (p < 0.001) ppm at day 8

vs. 10; overall decrease in colitis by increasing
dietary iron content

[82]

Copper

Supplementation:
1.6 (low), 6.0

(adequate), or 20
(high) ppm of

copper for 4 weeks

Male weanling
Sprague–Dawley rats
with high-fructose-fed

rats (NAFLD)

16S rRNA sequencing;
qPCR

Reduced abundance of
Verrucomicrobia; low-cupper diet

exhibited more pronounced
obesity phenotype featured by
high Firmicutes/Bacteroidetes

ratio, and decreased Bacteroidaceae,
and Bacteroides; high-copper diet
decreased Bifidobacteriaceae and

Bifidobacterium but increased
Lactobacillaceae and Lactobacillus,

Erysipelotrichaceae,
Enterobacteriaceae. Both low and

high copper diets reduced
Akkermansia

Increased levels of plasma AST, ALT, gut
permeability, and steatosis; ileal Reg3b protein

expression and IL-22 mRNA expression
(p < 0.001); downregulation of protein expression

of Claudin-1 and occludin by low- and
high-copper diets (p < 0.001); elevated plasma

endotoxin by low-copper diet (p < 0.0001)

[83]

Supplementation:
5 mg/kg of copper

for 90 days

8-week-old Kunming
female mice

16S rRNA gene
sequencing

Decreased abundance of Rikenella,
Jeotgailcoccus, and Staphylococcus;

increased abundance of
Corynebacterium (p < 0.05)

Body weight decrease (p < 0.05); blunt intestinal
villi, necrosis of enterocytes, severe atrophy of

central lacteal, and decreased number of
goblet cells

[84]



Foods 2024, 13, 1026 15 of 33

Table 1. Cont.

Bioactive
Compounds Research Design Experimental Model Methods Gut Microbiota Alteration Physiological Effect Ref.

Supplementation:
6, 120, and

240 mg/kg of
copper fed for

8 weeks

21-day-old male
Sprague–Dawley rats Pyrosequencing; AAS

High copper dose (120 and 240
mg/kg) decreased abundance of

Christensenellaceae, Lachnospiraceae,
Allobaculum, Flavonifractor,

Oscillospira, Parabacteroides-related
OTUs, and Blautia-related OTUs;

increased abundance of
Ruminococcaceae, Defluviitaleaceae,

Peptococcaceae,
Peptostreptococcaceae, Turicibacter,

Coprococcus, Anaerotruncus,
Peptococcus, Dorea, Rikenella,
Barnesiella, Bacteroides, and

Alistipes-related OTUs (p < 0.05)

No significant change in body weight and levels
of inflammatory cytokines IL-1β, IL-6, and IL-8
(p < 0.05); TNF-α increased significantly with

high copper level (p < 0.01)

[85]

Supplementation:
0, 0.04, 0.20, or

1.00 mg/kg CuSO4
for 15 days

1-day-old
Sprague–Dawley rats

16S rRNA gene
sequencing;

UPLC-Q-TOF

Dose-dependent impact on α- and
β-diversity, and reduced

Firmicutes/Bacteroidetes ratio;
increasing copper levels increased

Treponema_2 and
Erysipelatoclostridium and

decreased Romboutsia, Chlamydia,
Bifidobacterium, and Lactobacillus;
0.04 mg/kg increased abundance

of Alloprevotella,
Lachnospiraceae_NK4A136,
Ruminiclostridium_5, and

Ruminococcaceae_UCG-013 but
declined with other copper levels

Increased serum ALT, AST, and ALP levels and
decreased TP, ALB, and urea levels by 0.20 and

1.00 mg/kg dose (p < 0.05); no significant change
in albumin, globulin, ratio of white balls,
creatinine, and total cholesterol (p < 0.05).

Additionally, 0.20 and 1.00 mg/kg doses showed
inflammatory lesions, bile duct hyperplasia, and

fatty degradation while only 1.00 mg/kg
resulted in point necrosis; copper exposure
reduced N-acetyl-D-glucosamine, xanthine,

L-tyrosine, 2-phenylacetamide, phenylpyruvic
acid, L-phenylalanine but increased
2-hydroxybenzaldehyde, 12-KETE,

gamma-linolenic acid, and
20-hydroxyeicosatetraenoic acid (p < 0.05)
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Table 1. Cont.

Bioactive
Compounds Research Design Experimental Model Methods Gut Microbiota Alteration Physiological Effect Ref.

Zinc

Supplementation:
0/29/1000 mg/kg
of Zinc for 5 weeks

8- to 12-week-old
C57BL/6 S100a9−/−

mice with Clostridium
difficile

16S rRNA gene
sequencing; qPCR;

ICP-MS; LA-ICP-MS;
MALDI IMS

High Zn diet showed decreased
microbial diversity and OYUs of

Turicibacter (OTU 2) and
Clostridium (OTU 11) but

increased Enterococcus (OTU 4)
and Clostridium XI (OTU 3)

(p < 0.001)

Increased level of IL-1β and MCP-1, and
reduction in IL-6, IL-10, and IL-12 (p70) by high
Zn diet (p < 0.05); decrease in epithelial damage

and pseudomembrane formation

[86]

Supplementation:
0/30/150/600

mg/kg of Zn for 4
and 8 weeks

3-week-old C57BL/6
mice

16S rRNA gene
sequencing; GCMS

Increased abundance of
Verrucomicrobia, Akkermansia,

Faecalibaculum, Helicobacter,
Dubosiella, Caulobacter,

Bradyrhizobium, and Ileibacterium
by high and excess Zn diet;

decrease in Romboutsia, Bacteroides,
Lactobacillus, and Bifidobacterium
while Bacteroidetes/Firmicutes
ratio increased (p < 0.05) with
increasing Zn diet at 4 weeks;

increased abundance of
Actinobacteria, Bifidobacterium,
and Anaeroplasma at 8 weeks in

high Zn diets while
Verrucomicrobia, Intestinimonas,

and Lactobacillus decreased

Significant reduction in cecal metabolites and
total SCFAs, acetic acid, butyric acid, isobutyric

acid, isovaleric acid, and propionic acid by
excess Zn at both 4 and 8 weeks (p < 0.05)

[87]

Supplementation:
4 mg/kg zinc per
day for 8 weeks

2-month-old
Sprague–Dawley male

rats with hyperuricemia

16S rRNA gene
sequencing

Increased abundance of
Lactobacillus,

Norank-f-Muribaculaceae, and
Bacteroides; decreased abundance
of Clostridium, Romboutsia, Blautia,

and Norank-f-Lachnospiraceae

Decreased levels of uric acid levels (p < 0.01), and
adenosine deaminase and xanthine oxidase

(p < 0.05)
[66]
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Table 1. Cont.

Bioactive
Compounds Research Design Experimental Model Methods Gut Microbiota Alteration Physiological Effect Ref.

Manganese

Supplementation:
100 ppm MnCl2 for

13 weeks

Male and female
7-week-old C57BL/6

mice

6S rRNA gene
sequencings,

metagenomics
sequencing, and GC-MS

metabolomics

Decrease α-diversity; increased
relative abundance of Firmicutes
and Tenericutes and decrease in

Bacteroidetes and Verrucimirobia
in males; decrease in Firmicutes
and increased Verrucimirobia in

females (p < 0.05)

Significant alteration in genes for tryptophan
biosynthesis pathway in females with an increase

in anthranilate phosphoribosyltransferase
(p < 0.01), indole-3-glycerol phosphate synthase,

and tryptophan synthase (α-chain) (p < 0.05),
phenylalanine synthesis with increased

biosynthetic aromatic amino acid
aminotransferase (p < 0.001) and prephenate

dehydratase (p < 0.05); in male, there is increase
in tryptophan synthase (β-chain) (p < 0.001) and

decrease in biosynthetic aromatic amino acid
aminotransferase (p < 0.001) and prephenate
dehydratase (p < 0.01); additional sex-specific

alterations in GABA and putrescine biosynthesis
genes, precursor of neurotransmitter

synthesis, and LPS biosynthesis genes (p < 0.05);
decrease in α-tocopherol and γ-tocopherol in

both sexes

[88]

Deficiency: <0.01
ppm Mn for

14 days

3–4 weeks C57BL/6 mice
aged with DSS-induced

colitis

16S rRNA gene
sequencing; qPCR;

ICP-MS

No significant fecal microbiota
difference

Increased weight loss and 13% decrease in colon
length (p < 0.05); a significant decrease in colon
tight junction proteins Zo1, Zo2, Cldn2, Cldn3,

and Ocln but not on Cldn4, 5, 7, 12, and 15
(p < 0.05); MnSOD enzyme activity reduced by

57%, (p < 0.01) with a significant increase in
H2O2, 8-isoprostane (p < 0.05), and

8-hydroxy-2-deoxyguanosine (p < 0.01); decrease
in chemokine (Ccl2 and Cxcl1) expression; Tnfα,
Il6, Il1β, and Il10 showed no significant change

(p < 0.05)

[89]
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4. Kefir: Implications for Healthy Aging
4.1. Type 2 Diabetes

T2D is a complicated chronic disorder that puts patients at risk for long-term macro-
and microvascular consequences due to deficiencies in insulin secretion, glucose metabolism,
or both [43]. Chronic low-grade inflammation is correlated with the onset of T2D. An unbal-
anced intestinal microbiota, which is promoted by changes in intestinal permeability caused
by LPS-induced endotoxemia, favors the development of this inflammation, resulting in
systemic insulin resistance and the subsequent onset of metabolic syndrome and T2D [17].

A study using high-fat diet-fed mice found that Lactobacillus mali APS1 produced
from kefir grains lowered blood glucose and HOMA index while increasing glucagon-
like peptide (GLP-1) and butyrate levels [90,91]. Lowering the HOMA index indicates
better glycemic control while increasing GLP-1 implies appetite modulation and possibly
protection for insulin-producing pancreatic beta cells, which are essential for controlling
blood sugar levels [92]. Another study on Wistar rats with monosodium glutamate-induced
metabolic syndrome revealed that whole milk kefir consumption for 10 weeks reduced
insulin resistance. This improvement was linked to the calcium content in kefir and the
bioactive compounds generated during fermentation. Additionally, kefir enhanced glucose
uptake by muscle cells, further reducing insulin resistance [93].

Patients with type 2 diabetes have a microbiota that is characterized by a reduc-
tion in butyrate-producing bacteria, a moderate dysbiosis, an environment that is pro-
inflammatory, a decrease in the expression of genes involved in vitamin synthesis, an
increase in serum LPS levels, and an increased intestinal permeability [94]. However, the
gut microbiota contributes to energy generation via anaerobic digestion of food compo-
nents, which results in SCFA such as acetate, propionate, and butyrate. Notably, butyrate, a
major source of energy for colonocytes and the main byproduct of SCFA fermentation, is
known to regulate body weight and improve insulin sensitivity by boosting GLP-1 secretion
via GPR-mediated signaling and decreasing adipocyte inflammation [90].

A further beneficial effect of Kefir on T2D was discovered in a study involving
60 diabetic individuals aged 35 to 65. The patients were split into two groups, one receiving
kefir containing L. casei, L. acidophilus, and B. lactis and the other receiving conventional
fermented milk containing Streptococcus thermophiles and Lactobacillus bulgaricus. For eight
weeks, each group drank 600 mL of their assigned treatment beverage each day. Following
the intervention, individuals receiving kefir had lower levels of glycated hemoglobin and
fasting glucose than the group receiving the other fermented beverage although no signifi-
cant changes in serum triglyceride, TC, LDL-c, and HDL-c [95]. Currently, there are only a
few clinical studies linking kefir intake with gut microbiota composition in healthy and
disease conditions (Table 2).
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Table 2. Select randomized controlled trials on the physiological roles of kefir.

Research
NCT/Population/Duration Source of Intervention/Dose Gut Microbiota Alteration Physiological Effect References

NCT03966846; 62 participants with
metabolic syndrome (18–65 years);

12 weeks

DC1500I culture (Olsztyn, Poland);
180 mL of kefir daily; control:
unfermented milk (180 mL)

Significant increase in Actinobacteria
(p = 0.023); no significant change in

Bacteroidetes, Proteobacteria, or
Verrucomicrobia

Kefir intake resulted in decrease in serum
TNF-α (p = 0.047; 40%), IL-6 (p = 0.01;
23.7%), IL-10 (p < 0.01 = 56.5%), IFN-γ

(p < 0.01; 46.8%), homocysteine (p = 0.048;
4.3%), SBP (p < 0.01; 7%), and DBP (p = 0.04;

5.2%); no significant change in
anthropometrical parameters (weight, BMI,
WC, FM, FFM, TBW), glycemic parameters
(glucose, insulin, HbA1c, HOMA-IR), and

lipid profile (TC, HDL-c, ApoA1, ApoB,
triglycerides); improvement in

inflammatory markers

[96,97]

NCT01428999; 54 healthy adults
(20–40 years); 3 weeks

AB-kefir and placebo products by
SYNBIO TECH INC (Kaohsiung,

Taiwan); AB-kefir group or placebo
group; one sachet (2 g) of AB-kefir
or placebo after meal twice a day

In males, a significant correlation was
observed between (1) heightened

abdominal bloating and a reduction in
bifidobacteria (p = 0.022), (2) an elevated E.
coli population (p = 0.080) and total aerobes
(p = 0.096), (3) increased bifidobacteria and
decreased total aerobes (p = 0.041) and (4)

increased E. coli and increased total aerobes
(p = 0.008).

In females, there was an increase in total
anaerobes (0.49 log CFU/g; p = 0.038) and
total gut microbial counts (0.45 log CFU/g;

p = 0.049)

Kefir consumption showed a reduction in
symptoms of abdominal pain, bloating

(p = 0.014), and appetite (p = 0.041); general
improvement in gastrointestinal functions

[98]

NCT02849275; 26 healthy adults
(25–45 years); 4 weeks

Dairy-fermented beverage (25–30 ×
109 CFU of active kefir cultures);
8 oz of a dairy-based fermented

beverage or control (8 oz
non-fermented beverage)

Increased abundance of Lactobacillus
(p < 0.01)

Significant improvement in performance on
two metrics of relational memory,

misplacement (p = 0.04) and object–location
binding (p = 0.03); although no observed

correlations between Lactobacillus
abundance and memory performance;

improvement in hippocampal-dependent
relational memory

[99]
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Table 2. Cont.

Research
NCT/Population/Duration Source of Intervention/Dose Gut Microbiota Alteration Physiological Effect Reference

45 patients with IBD (UC:
19–68 years, CD: 24–65 years);

4 weeks

Kefir fermented and produced
under anaerobic conditions (Kefir

culture: 2.0 × 1010 CFU/mL viable
Lactobacillus bacteria); 400 mL/day

kefir; control group: no treatment

Kefir significantly increased fecal
Lactobacillus in CD compared to the control

group (p < 0.024); no significant change
in UC.

UC and CD showed increased Lactobacillus
bacterial fecal load (p = 0.001 and p = 0.005)

after kefir intake (week 4)

Significant reduction in bloating scores
(p = 0.012) and feeling good scores

significantly increased (p = 0.032) in CD
[100]

Abbreviations: WC, waist circumference; ApoB, apolipoprotein B; SBP, systolic blood pressure; TBW, total body water; DBP, diastolic blood pressure; FFM, fat-free mass; BMI, body
mass index; FM, fat mass; ApoA1, apolipoprotein A1; HDL-c, high-density cholesterol; HOMA-IR, homeostasis model assessment for insulin resistance; IFN-γ, interferon-gamma; IL,
interleukin; LDL-c, low-density cholesterol; TC, total cholesterol; TNF-α, tumor necrosis factor-α; HbA1c, hemoglobin A1C; CRP, C-reactive protein; sICAM-1, secretory intercellular
adhesion molecule 1; sVCAM-1, secretory vascular cell adhesion molecule 1; UC, ulcerative colitis; CD, Crohn’s disease; TUNEL, terminal deoxynucleotidyl transferase dUTP nick-end
labeling; DMH, 1,2-dimethylhydrazine.
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4.2. Cardiovascular Health

Dyslipidemia, a known risk factor for cardiovascular disease, causes decreased diver-
sity in the gut microbiota, rendering people more vulnerable to dysbiosis. This increased
susceptibility causes inflammation and alterations in intestinal permeability, resulting in
negative health effects for the host. SCFAs contribute to energy generation, lipogenesis,
gluconeogenesis, and cholesterol synthesis, in addition to primary bile acids capable of
binding to the farnesoid X receptor, which is an important protein in the etiology of obe-
sity [101,102]. However, kefir blocked intestinal lipid uptake in obese mice through the
reduction in hepatic and serum triglycerides, total cholesterol, and LDL-c as well as reduced
expression of genes linked to adipogenesis, lipogenesis, and proinflammatory cytokines in
epididymal fat [103].

Despite the little exploration of its biological profile, several biologically active pep-
tides are produced by the symbiotic metabolic interactions between different bacterial
and yeast species in kefir, including ACE-inhibitory peptides that block the angiotensin-
converting enzyme (ACE), preventing the conversion of angiotensin I to the vasoconstrictor
angiotensin II [104]. This inhibits the production of aldosterone, which typically increases
serum sodium levels and elevates blood pressure, while also impacting bradykinin, a
vasodilatory hormone, resulting in decreased blood pressure [50,93].

In addition, the discovery of 16 peptides released from caseins, including two (se-
quences PYVRYL and LVYPFTGPIPN) exhibiting strong ACE-inhibitory capabilities, shows
that commercial kefir made from caprine milk demonstrates considerable angiotensin-
converting enzyme (ACE)-inhibitory activity [105]. These findings imply that kefir may
harbor a wide variety of bioactive chemicals with the ability to work independently or
synergistically, making it a suitable therapeutic option or adjunct in the treatment of hyper-
tension.

Furthermore, a soluble non-bacterial fraction of kefir reduced cardiac hypertrophy in
spontaneously hypertensive rats (SHRs), possibly through ACE inhibition and lowering
the TNF-α-to-IL10 ratio and improved baroreflex sensitivity in hypertensive rats. It also
decreased mean arterial pressure (MAP) and heart rate (HR) [39]. Kefir was also shown
to increase baroreflex sensitivity (BRS) in SHR and to reduce cardiac autonomic control
impairment when taken regularly in modest doses [106].

In another separate study, a 60-day kefir treatment improved endothelial function
in SHR, which was attributed to the partial restoration of the ROS/NO balance and the
recruitment of endothelial progenitor cells, both of which contributed to the improvement
of the endothelial architecture [107]. Also, administration of pitched (traditional) kefir
(350 g of kefir/day) for 4 weeks in adult males reduced high LDL-c, ICAM-1, VCAM-1,
IL-8, TNF- α, and CRP, indicating the metabolic impact of kefir intake [108].

As shown in Figure 2 [109], LDL oxidation is regarded as the primary cause of
atherosclerotic plaque development and a substantial contributor to proinflammatory
responses in the subendothelial area [110]. The involvement of HDL in lipid distribution,
enabling the absorption and movement of cholesterol deposited in atherosclerotic plaque
foam cells back to the liver and bile (cholesterol reverse transport), highlights the anti-
atherogenic and anti-inflammatory effects of HDL [111,112], NO-promoting effects, and
inhibition of TNF-α-induced endothelial cell apoptosis [113,114].
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HDL inhibits the cytotoxic impact of oxidized LDL on the vascular endothelium that
triggers the atherogenesis process, reducing inflammation by inhibiting the expression of
adhesion molecules on the endothelium surface, such as P-selectin, E-selectin, ICAM-1, and
VCAM-1 leading to reduced T-cell and monocyte adherence to the vascular endothelium,
hence restricting their movement to atheromatous focus. Pro-inflammatory processes are
initiated when soluble forms of endothelial adhesion molecules, sP-selectin, sE-selectin,
sICAM-1, and sVCAM-1 are released into the bloodstream from the surface of active
endotheliocytes [115]. The significant reduction in lipid profile parameters including LDL-
c, cell adhesion molecules ICAM-1 and VCAM-1, as well as proinflammatory cytokines such
as IL-8, TNF-α, and IL-17a after kefir intake reveals its atheroprotective effect, protecting
against cardiovascular disease.

4.3. Cognitive Function and Alzheimer’s Disease

A wealth of data shows that diverse stimuli affect the intestinal mucosa, influencing
gut integrity via the hypothalamic–pituitary–adrenal axis [116,117]. This link extends to
neurodegenerative conditions and gut dysbiosis, with gut microbiota-derived molecules im-
pacting the blood–brain barrier and brain function [118]. The development of Alzheimer’s
disease is linked to an imbalance in the microbiota–gut–brain axis, which may be ag-
gravated by a lack of probiotic bacteria owing to an imbalanced diet [119]. Microglial
maturation and function, blood–brain barrier construction and stability, myelination, and
neurogenesis, among other neurodevelopmental processes, have all been discovered to be
influenced by gut microbiota and contribute to neurological health [17,120].

In an experimental study involving an animal model exposed to nicotine-induced
stress, Noori et al. [121] investigated the potential therapeutic effects of fermented kefir
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made from both soy and cow’s milk on depression, anxiety, and cognitive impairment.
A battery of tests, including the elevated plus maze (EPM) for anxiety assessment, the
open field test (OFT) to evaluate locomotor activity and anxiety, and the forced swim
test (FST) for measuring depression severity, was employed. Throughout the treatment
period, a significant improvement in anxiety reduction, depression severity, and cognitive
performance was observed and is thought to be related to kefir’s high tryptophan content,
which is a precursor to serotonin, a neuromodulator that plays an important role in fostering
neuroplasticity and neuronal growth associated with depression [122].

Similarly, in an animal model mirroring human depression induced by six weeks of ex-
posure to seven stressors, mice supplemented with Lactobacillus kefiranofaciens ZW3, sourced
from kefir, displayed increased activity, a greater preference for sucrose, and reduced risk
of constipation, a condition associated with depression. This supplementation also led to
improved tryptophan metabolism, elevated anti-inflammatory cytokines, decreased pro-
inflammatory cytokines, and notable changes in the gut microbiota composition, including
increases in Actinobacteria, Bacteroides, Lachnospiraceae, Coriobacteriaceae, Bifidobacteriaceae,
and Akkermansia and decrease in Proteobacteria [123].

Tryptophan stimulates SIRT1, PGC-1α, and FOXO1 in colons and brains, reducing
aging-related defects via AMPK/SIRT1/PGC-1α and PXR/TLR4/NF-κB pathway regula-
tion [124]. SIRT1, which is dependent on NAD+, promotes longevity by controlling energy
metabolism, mitochondrial function, and anti-aging via AMPK [125,126]. SIRT1 reduces
oxidative damage, inflammation, and apoptosis by upregulating the expression of PGC-1α,
FOXO1, NF-κB, and Bax [127,128]. AMPK/SIRT1 promotes CREB/BDNF pathway expres-
sion, reducing cognitive impairment associated with aging [129]. Indoles, a tryptophan
metabolite, improve gut barrier function by suppressing TLR4/NF-κB through PXR [130].

Oxidative stress is important to the pathophysiology of Alzheimer’s disease (AD),
impacting the brain more deeply due to mitochondrial malfunction, increased metal lev-
els, inflammation, and β-amyloid peptides [131]. An in vivo study utilizing aged mice
reveals that probiotics fermentation technology (PFT) containing specific microbes namely
Lactobacillus kefiri P-IF, L. kefiri P-B1, Kazachstania turicensis, Kazachstania unispora, and
Kluyveromyces marxianus reduces age-related oxidative stress. A six-week oral daily dosage
of 2 mg/kg body weight PFT suppresses oxygen radical generation, enhances GSH and
total antioxidant capacity, and reduces NO and MDA levels, restoring age-related oxidative
alterations to levels comparable to those seen in young, untreated mice [132].

Furthermore, in a study using a fly model of AD, supplementing their diet with kefir
made from grains containing Lactobacillus species (L. kefiranofaciens, L. kefiri, Acetobacter
fabarum, L. lactis, and Rickettsiales) resulted in significant improvements. This included a
1.6-fold increase in survival rates, a 2-fold enhancement in climbing ability, and reduced
severity of brain vacuolar lesions, all indicating a positive impact on the neurodegenerative
phenotype of the flies [133]. Kefir-fed animals had a unique gut microbiota composition,
which is thought to have a favorable effect on the gut–brain axis. Microbiome analysis
suggests that kefir may boost the synthesis of gamma-aminobutyric acid (GABA), an
inhibitory neurotransmitter. This action is thought to be mediated by the conversion of
2-oxoglutarate to glutamate, which may be aided by Lactobacillus reuteri. The manipulation
of the intestinal microbiota by kefir results in an increased presence of Lactobacillus reuteri, a
bacterial species renowned for its positive effects on the host’s immunological and metabolic
systems [134].

In humans, kefir was shown to improve the symptoms of AD in human studies.
Kefir consumption by patients with probable AD for 90 days showed substantial cogni-
tive improvements, including higher memory test scores, enhanced visual–spatial and
abstraction abilities, better executive, and language functions, and improved Mini-Mental
State Examination (MMSE) scores, which were accompanied by reduced serum TNF-α,
IL-12p70, IL-8, enhanced mitochondrial membrane potential, and reduced intracellular
ROS in erythrocytes [135].
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4.4. Cancer

Since cancer cells proliferate rapidly and are resistant to apoptosis, with a strong
relationship to poor dietary habits, it is critical to investigate dietary components, par-
ticularly probiotics such as kefir as a possible therapeutic option for mitigating cancer
cell growth [136]. During neoplastic growth, tumor cells evade the immune response,
and probiotic bacteria have been found to promote immune system effector activities in
co-cultures with peripheral blood mononuclear cells (PBMCs), as evidenced by cytokine
profiles [137,138].

Previous research has demonstrated the involvement of kefir in the anti-tumor process
in many malignancies, such as breast cancer [139,140], leukemia [141,142], skin cancer [143],
gastric cancer [144,145], colon cancer [146,147], and sarcomas [148,149].

In a study to examine the effects of kefir on colorectal cancer (CRC) via gut microbiota
composition regulation using internally transcribed spacer 2 (ITS2) and 16S rRNA high-
throughput sequencing on azoxymethane/dextran sulfate sodium (AOM/DSS)-induced
CRC mouse model, kefir supplementation decreased the ratios of Firmicutes/Bacteriodetes
and Ascomycota/Basidiomycota ratio, as well as the relative abundance of pathogenic
bacteria Clostridium sensu stricto, Aspergillus and Talaromyces. This was accompanied by a
decrease in oncocyte proliferation indicator (Ki67, NF-κB, and β-catenin) and immunity reg-
ulators (TNF-α, IL-6, and IL-17a) while the relative abundance of probiotics increased [24].

Further study showed that administration of Lactobacillus kefiranofaciens JKSP109 (LK)
and Saccharomyces cerevisiae JKSP39 (SC) from Tibetan kefir grain and their combination on
an AOM/DSS-induced mouse model of CRC led to an increased expression of TUNEL-
positive tumor epithelial cells and the content of short-chain fatty acids in fecal samples,
as well as increase in body weights while disease activity index, tumor multiplicity, and
proinflammatory cytokines were reduced [150]. Likewise, several similar studies have
reported the anticancer properties of kefir including its anti-tumor effect via the promotion
of tumor immunotherapy by modulating the gut microbiota composition [151], regulation
of intestinal inflammation, and subsequent reduction of DMH-induced CRC in Wistar rat’s
offspring programmed for adulthood through neonatal overfeeding [152].

Kefir has been found to exert its anticancer effects via multiple mechanisms [136].
Kefir contains bioactive peptides that stimulate macrophage activation, phagocytosis, and
NO generation, resulting in increased TNF-α, IL-5, IL-6, IL-1β, and IL-12 levels, leading
to increased IgA secretion and inhibition of inflammatory responses via decreased IL-
8 secretion [40,136,153]. Kefir consumption also controls apoptosis by lowering TGF-α,
TGF-β, and Bcl2 secretion while boosting bax secretion. Kefir’s active peptides trigger
ROS-mediated apoptosis and stimulate Ca2+/Mg2+-dependent endonucleases for DNA
cleavage [154]. An anti-proliferative impact on malignant cells is triggered by low TGF-α
and TGF-β secretion, while kefir’s sphingomyelins increase IFN-β release, which acts as an
anti-proliferative cytokine [155,156].

5. Applications in Food Product Development

Kefir, known for its diverse beneficial microorganisms and bioactive compounds, offers
a range of health benefits in dairy products, although milk-related hypersensitivities pose
challenges. In response, fermented non-dairy beverages are gaining popularity, prompting
scientific exploration of kefir adaptation onto non-dairy substrates like fruits, vegetables,
and molasses for diverse fermentation bioprocesses [157].

A recent study examined how the amount of kefir grains and fermentation time
affected the composition, sensory aspects, and color of a probiotic beverage. The study
found substantial impacts, such as a drop in sugar content, and an increase in acidity, total
phenols, carbon dioxide, and organic acids. The study also discovered that fermentation
altered sensory qualities such as color, brightness, chroma values, density, antioxidant
activity, citric acid, and hue values, with differences related to the quantity of kefir grains
inoculum and fermentation period [158].
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Natural materials are increasingly being used in the food and packaging industries
to provide ecologically friendly and biodegradable packaging solutions [159]. A recent
study investigated the effects of kefir on the quality of gelatine-based edible films. The
findings revealed that, while the thickness of the films remained constant, density rose
and hydrophilic characteristics improved. Although kefir improved surface morphology,
excessive application resulted in hazy formations and a minor loss in mechanical charac-
teristics. The inclusion of kefir enhanced the greenness, yellowness, and opacity of the
films. This suggests that kefir could be a more environmentally sustainable alternative
to petrochemical packaging, as it showed no growth of harmful microorganisms over a
10-day period, highlighting potential benefits for both environmental sustainability and
human health [160].

Besides food product development, a recent study examined the potential of kefiran, a
biopolymer, for tissue engineering and regenerative medicine applications [161]. Extracted
kefiran was used to produce scaffolds by cryogelation and freeze-drying, with molecular
structures validated by proton NMR and FTIR spectra. The results indicated a high
molecular weight, acceptable rheological properties, and scaffold traits like porosity and
wall thickness. The kefiran extracts and scaffolds had no cytotoxic impact on L929 cells and
showed no significant differences in cytocompatibility, which altogether positions them as
potential options in tissue engineering and regenerative medicine.

Additionally, while traditional kefir made from natural grain-based kefir is reported to
elicit health-benefiting properties, commercial kefirs made of defined mixtures of microor-
ganisms are emerging with different functional effects. Due to the complexities of using
grains and the resulting limitations on product shelf-life, modern commercial kefirs employ
artificial microbial blends. Commercial kefir production now involves various starter cul-
ture producers and dairy product manufacturers. Research indicates that commercial kefirs
differ significantly from traditional grain-based kefir in microbial composition and metabo-
lite characteristics, which therefore necessitates further investigation on their potential in
the food industry and functional effects on consumers [157,162].

6. Perspectives

The manipulation of the intestinal microbiota has emerged as a promising strategy
for both disease prevention and therapeutic intervention, and the utilization of fermented
foods possessing probiotic properties offers a nutritional approach as an alternative to
synthesized drugs. Kefir, distinguished by its established safety profile in both animal and
human, cost-effectiveness, ease of preparation, and microbiological composition enriched
with bioactive compounds, metabolites, and peptides, stands out as a potential functional
food with substantial health benefits.

Kefir contains bioactive compounds and unique peptides; it harbors specific bacte-
rial strains known to orchestrate shifts in the composition of gut microbiota, alleviate
low-grade inflammation, and promote optimal health. These result in a wide range of
health advantages that may lessen the growing prevalence of these age-related disorders.
Additionally, the modern food market is seeing the rise of novel functional foods, fueled by
the remarkable therapeutic capabilities of kefir grains. This has resulted in a greater de-
mand for healthier and more sustainable food items infused with kefir and its value-added
derivatives. Furthermore, specialists in nutrition and food science are expressing a strong
interest in extending research disciplines to explore the therapeutic qualities of kefir.

However, further research is necessary to exploit the advantages that highlight kefir’s
potential in healthy aging, specifically to (1) comprehend the precise microorganisms
orchestrating its beneficial effects, their complex molecular interactions with other bioactive
compounds within the gut (whether as synbiotics or postbiotics), and how they impact the
gut–brain axis; and (2) perform controlled human intervention trials that might enable a
more robust approach to elucidating the specific functional mechanisms by which kefir
exerts its biological benefits, particularly in the context of promoting healthy aging.
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ulcerative colitis; CD, Crohn’s disease; TUNEL, terminal deoxynucleotidyl transferase
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acid; 11β-Hsd1, 11-β-hydroxy-steroid-dehydrogenase 1; BCAA, branched chain amino
acids; A β, amyloid-β peptides; BACE1, beta-site APP-cleaving enzyme 1; BDNF, brain-
derived neurotrophic factor; GABA, γ-aminobutyric acid; APP/PS1, amyloid precursor
protein/presenilin 1; P-tau, phosphorylated Tau; RXRs, retinoid X receptors; RALDH1,
retinaldehyde dehydrogenase 1; RAR, retinoic acid receptors; CYP26B1, cytochrome P450
family 26 subfamily B member 1; DAO, diamine oxidase; αSMA, α-smooth muscle actin;
Col1a1, collagen type I alpha 1; Col2a1, collagen type II alpha 1; Col3a1, collagen type III
alpha 1; FATP2, fatty acid transport protein 2; ACADL, long-chain specific acyl-CoA dehy-
drogenase; PPARγ, peroxisome proliferator-activated receptor gamma; TG, triglycerides;
Hcy, homocysteine; TBA, total bile acids; TC, total serum cholesterol; CPT1α, carnitine
palmitoyltransferase 1A; AST, aspartate aminotransferase; ALT, alanine aminotransferase;
FBG, fast blood glucose; HDL, high-density lipoprotein; LDL, low-density lipoprotein;
CCR2, chemokine receptor C-C chemokine receptor type 2; ACACA, acetyl-CoA carboxy-
lase; FASN, fatty acid synthase; SREBP1c, sterol regulatory element binding transcription
protein 1c; SCD, stearoyl CoA desaturase; FABP1, fatty acid-binding protein 1; TLR4,
toll-like receptor 4; MyD88, myeloid differentiation primary response protein 88; IRAK1,
interleukin 1 receptor-associated kinase 1; TRAF6, tumor necrosis factor receptor associated
factor 6; IκBα, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor,
alpha; sEPSCs, spontaneous excitatory post-synaptic currents; Bcat2, branched-chain amino
acid transaminase 2; Bckdha, branched-chain keto acid dehydrogenase E1 subunit alpha;
Ppm1k, protein phosphatase 1K; Pgc-1a, Ppar-g coactivator 1a; Cox1, cytochrome c oxidase
subunit 1; Nd1, NADH dehydrogenase subunit 1; Nd6, NADH dehydrogenase subunit 6;
T-AOC, total antioxidant capacity; QUICKI, quantitative insulin sensitivity check index.
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