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Abstract A wide range of lactic acid bacteria (LAB) is able to
produce capsular or extracellular polysaccharides, with vari-
ous chemical compositions and properties. Polysaccharides
produced by LAB alter the rheological properties of the matrix
in which they are dispersed, leading to typically viscous and
“ropy” products. Polysaccharides are involved in several
mechanisms such as prebiosis and probiosis, tolerance to
stress associated to food process, and technological properties
of food. In this paper, we summarize the beneficial properties
of exopolysaccharides (EPS) produced by LAB with particu-
lar attention to prebiotic properties and to the effect of
exopolysaccharides on the LAB-host interaction mechanisms,
such as bacterial tolerance to gastrointestinal tract conditions,
ability of ESP-producing probiotics to adhere to intestinal ep-
ithelium, their immune-modulatory activity, and their role in
biofilm formation. The pro-technological aspect of
exopolysaccharides is discussed, focusing on advantageous ap-
plications of EPS in the food industry, i.e., yogurt and gluten-
free bakery products, since it was found that these microbial
biopolymers positively affect the texture of foods. Finally, the
involvement of EPS in tolerance to stress conditions that are
commonly encountered in fermented beverages such as wine is
discussed.
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Introduction

The term “exopolysaccharide” (EPS) is generally related to all
forms of polysaccharides present outside of the microbial cell
wall. Several lactic acid bacteria (LAB) produce long chains
of homo- or heteropolysaccharides, consisting of (branched)
repeating units of sugars or sugar derivatives (Ruas-Madiedo
et al. 2002; Zannini et al. 2016), which may be substituted
with various chemical moieties (Kleerebezem et al. 1999).
EPS can be either weakly or strongly bound to the bacterial
cell surface and they are distinguished into capsular and se-
creted forms (Chapot-Chartier et al. 2011). In some cases, EPS
confer and increased viscosity to their original environment
(Fig. 1).

The physiological role that exopolysaccharides play in
the ecology of LAB is not yet completely understood. EPS
are thought to protect the bacterial cells against extreme
conditions such as biotic stress and/or abiotic stresses, in-
cluding temperature, light intensity, pH, or osmotic stress
(Donot et al. 2012). EPS can also be involved in adhesion to
surfaces and biofilm formation and to cell adhesion/
recognition mechanisms (Ruas-Madiedo et al. 2002;
Broadbent et al. 2003; Rozen et al. 2004). Several health
benefits have been attributed to the microbial
exopolysaccharides, such as immune-stimulatory
(Vinderola et al. 2006; Hidalgo-Cantabrana et al. 2012;
Matsuzaki et al. 2014) and antitumoral effects (Kitazawa
et al. 1998; Nishimura 2014) or lowering blood cholesterol
(Nakajima et al. 1992; Maeda et al. 2004b; Ryan et al.
2015). The different exopolysaccharides’ chemical struc-
ture affects their potential prebiotic properties. Moreover,
the EPS chemical structure could confer diverse probiotic
and pro-technological characteristics to the bacterial pro-
ducer strains (Kleerebezem et al. 1999; van Kranenburg
et al. 1999a; Tallon et al. 2003; Zannini et al. 2016).
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Fig.1 Ropy phenotype ofa Lactobacillus plantarum EPS-producing strain on de Man, Rogosa and Sharpe (MRS) plate (a) and MRS broth (b, ¢). MRS
broth culture of a L. plantarum EPS-producing strain without ropy phenotype (d)

Exopolysaccharides’ biosynthesis and chemical
classification

The production of exopolysaccharides by LAB has been cor-
related to specific gene clusters tagged as eps or ¢ps, located,
as in Streptococcus thermophilus or Lactobacillus plantarum,
mainly on the bacterial chromosome (Stingele et al. 1996; De
Vuyst and Degeest 1999; Siezen et al. 2010) or in species such
as Lactococcus lactis and Pediococcus damnsosus predomi-
nantly on plasmids (Van Kranenburg et al. 1997, 1999b).
Remus et al. (2012) identified four cps genes clusters in the
chromosome of L. plantarum WCFS1, which are associated
with surface polysaccharide production. The eps/cps clusters
include genes encoding both regulatory factors and enzymes
involved in EPS biosynthesis, polymerization, and secretion,
including glycosyltransferases, which are responsible for the
assembly of the characteristic EPS-repeating unit (De Vuyst
and Degeest 1999; Welman and Maddox 2003; Lebeer et al.
2009; Kleerebezem et al. 1999; Nierop Groot and
Kleerebezem 2007) (Fig. 2).

The Wzx/Wzy-dependent assembly pathway is involved in
biosynthesis of several surface polymers, including EPS
(Yother 2011). The synthesis of the sugar units occurs in the
cytoplasm; they are assembled on the lipid carrier molecule
undecaprenyl phosphate through monosaccharides transfer
from nucleotide sugars by specific glycosyltransferases; sub-
sequently, Wzx (flippase) move the lipid-bound repeating
units from the cytoplasmic face of the membrane to the outer
face where they are polymerized by Wzy (Islam and Lam
2013). Several models of EPS assembly have been proposed
for L. lactis (Kleerebezem et al. 1999; Laws et al. 2001),
Streptococcus pneumoniae (Bentley et al. 2006), and
Lactobacillus rhamnosus (Lebeer et al. 2009). However, in
addition to the “flippase-like” route, it could be possible, in
LAB, another route involving ABC transporters, although the
export-polymerization pathway for EPS production in LAB
has not yet been demonstrated.

Microbial exopolysaccharides are divided into two groups:
homopolysaccharides (e.g., cellulose, dextran, mutan, alternan,
pullulan, levan, and curdlan) and heteropolysaccharides (e.g.,
gellan and xanthan) (Welman and Maddox 2003; Zannini et al.
2016). Homopolysaccharides (HoPS) in LAB consist of
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repeating units of one kind of monosaccharide, such as D-glu-
cose or D-fructose; they consist mainly in glucans and fructans,
with molecular weights ranging from 10° to 10° Da (Ruas-
Madiedo et al. 2002; Badel et al. 2011). Depending on the
linkage type and the position of the carbon involved in the
bond, HoPS can be classified as «-D-glucans (dextran, mutan,
reuteran, and alternan) and (3-D-glucans, whereas those contain-
ing fructose are fructans (levan and inulin-types) (Ruas-
Madiedo and de los Reyes-Gavilan 2005). Glucans and fructans
are found most frequently among the homopolysaccharides,
and they are both applied as ingredient in the food industry
(Anwar et al. 2008; Zannini et al. 2016).

Conversely, heteropolysaccharide (HePS) are composed
commonly by glucose, galactose, and rhamnose and in some
cases by N-acetyl-D-glucosamine and N-acetyl-D-galactos-
amine (Badel et al. 2011) but may also contain phosphate or
other moieties in their polymeric structure (van Kranenburg
et al. 1999a; Kleerebezem et al. 1999). The molecular mass is
generally between 10* and 10° Da (Ryan et al. 2015). The
exopolysaccharides yield and composition produced by some
LAB appear to be significantly influenced by culture and fer-
mentation conditions (i.e., pH, temperature, incubation time,
and medium composition) (Duefias et al. 2003; Torino et al.
2015; Zannini et al. 2016) while in some strains appear a
relatively constant production of these polymers under a vari-
ety of conditions (Boels et al. 2003). To date, among LAB, the
yield of heteropolysaccharides is quite variable (Tsuda 2013);
one of the largest EPS producers is L. rhamnosus RW-9595M
(2775 mg/L) (Macedo et al. 2002) and Lactobacillus
kefiranofaciens WT-2B (2500 mg/L) (Maeda et al. 2004a)
followed by L. lactis subsp. cremoris (80-600 mg/L),
S. thermophilus (50-350 mg/L), Lactobacillus delbrueckii
subsp. bulgaricus (60—-150 mg/L), Lactobacillus casei (50—
60 mg/L) (Cerning 1995), and L. plantarum (140 mg/L)
(Tsuda and Miyamoto 2010).

_! Polymerisation | Glycosyltransferases - Secretion —

Fig.2 Block representation of a generic cps/eps gene cluster, involved in
exopolysaccharides biosynthesis
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Prebiotic properties of exopolysaccharides

Although the definition of prebiotics has been altered over the
years, a recently proposed definition is “a selectively
fermented ingredient that results in specific changes in the
composition and/or activity of the gastrointestinal microbiota,
thus conferring benefit(s) upon host health” (Gibson et al.
2010).

A prebiotic effect has been observed for exopolysaccharides
produced by LAB (Dal Bello et al. 2001; O’Connor et al.
2005), as they can be used by probiotic strains, if they possess
enzymes capable to degrade the EPS (Tsuda and Miyamoto
2010). An increased growth of probiotic bacteria was elicited
by an o-D-glucan produced by a strain L. plantarum, which
showed a low digestibility by artificial gastric juice and
displayed in vitro prebiotic activities, corroborated by the poor
growth of non-probiotic bacteria such as Enterobacteriaceae
(Das et al. 2014). A bifidogenic effect of levan-type EPS from
Lactobacillus sanfranciscensis has also been reported (Dal
Bello et al. 2001). Exopolysaccharides from Weissiella cibaria,
Weissiella confusa, L. plantarum, and Pediococcus pentosaceus
exhibited high resistance to gastric and intestinal digestions,
selective enhancement of beneficial gut bacteria, in par-
ticular bifidobacteria, suggesting their prebiotic potential
(Hongpattarakere et al. 2012). The growth of probiotic micro-
organisms, defined as “live microorganisms that, when admin-
istered in adequate amounts, confer a health benefit on the host”
(Hill et al. 2014), may be positively modulated by [3-D-glucan
produced by Pediococcus parvulus (Russo et al. 2012). In con-
trast, purified EPS from P. parvulus were un- able to elicit
prebiotic effects in a mouse model, although ingestion of live
EPS-producing bacteria-antagonized Enterobacteriaceae with-
out disturbing the homeostasis of the microbiota (Lindstrom
et al. 2013).

Exopolysaccharides-host interactions

The consumption of probiotic bacteria has been proposed to
be beneficial to human health. These bacteria have been sug-
gested to contribute to nutrient digestion, development, and
maintenance of appropriate mucosal immune functions.
Furthermore, some microorganisms provide essential vita-
mins (e.g., folate, biotin, vitamin K) and produce short-chain
fatty acids that are used as energy source by colon cells
(Gerritsen et al. 2011; Bove et al. 2013; Arena et al. 2014)).
Tolerance to gastrointestinal stress, adhesion on the intesti-
nal mucosa, the ability to inhibit pathogens, and the modula-
tion of immune system are some of the criteria adopted for the
selection of probiotics bacteria (Dunne et al. 1999).
Exopolysaccharides produced by LAB may be important
on probiotic survival during the gastrointestinal transit. For
instance, Stack et al. (2010) reported that 3-glucan produced

by P. parvulus confers to Lactobacillus paracasei higher sur-
vival during gastrointestinal passage or technological process
conditions. Moreover, the addition of microbial glucans has
been proven to enhance growth, stress tolerance, and probiotic
potential of lactobacilli (Russo et al. 2012). In contrast, in
P parvulus and L. lactis, the presence of EPS did not confer
advantage for bacterial cells survival in the human digestive
tract (Fernandez de Palencia et al. 2009; Looijesteijn et al.
2001). The differences observed may be due to the diverse
structures and compositions of EPS produced by LAB as well
as the strains specificity ability to use different EPS.
LAB-EPS also have a key role in biofilm formation and sur-
faces adhesion enabling the colonization of different environ-
ments (Dertli et al. 2015; Zannini et al. 2016). Ruas-Madiedo
et al. (2006a) evaluated the effect of exopolysaccharides iso-
lated from Scandinavian traditional fermented milk on
probiotics adhesion and their interference of enteric pathogens
bacteria adhesion on human intestinal mucus model. These
authors observed a greater probiotic adhesion in absence of
EPS, without differences in the pathogens’ adhesion (Ruas-
Madiedo et al. 2006a). Furthermore, exopolysaccharides from
probiotic bacteria seem to adhere to intestinal mucus in dose-
dependent manner; the ubiquity of cps/eps gene clusters on
probiotic genomes suggests that such strains from the intestinal
microbiota may produce these polymers in gut and that high
EPS concentrations could be locally reached in the gastroin-
testinal tract (Ruas-Madiedo et al. 2006b; Salazar et al. 2015).
EPS layer might shield specific adhesion factors on the bacte-
rial cell surface and/or electrostatically interfere with the bind-
ing to receptors of mucosal surface, thus hindering the adhe-
sion process and the recognition mechanisms which are re-
quired for stable adherence on animal cells (Lebeer et al.
2009; Denou et al. 2008; Remus et al. 2012; Dertli et al.
2015) (Fig. 3). For example, changes in the genes involved
in EPS synthesis in Lactobacillus johnsonii altered its surface
properties and affect biofilm formation, cell adhesion, and
autoaggregation, all important factors for bacterial colonization
of the gut (Dertli et al. 2015). Therefore, the EPS removing
might enhance bacterial attachment, thus exposing adhesins
and/or other cell surface factors that favor the process of bac-
terial adherence. Moreover, EPS could interfere with adhesion
to intestinal cells by a competitive inhibition mechanism
(Ruas-Madiedo et al. 2006b). Nikolic et al. (2012) reported
that non-ropy derivatives microorganism improved in vitro
adhesion with respect to the parental strains. In contrast, (3-
glucans secreted by P. parvulus increased the adhesion of the
EPS-producing bacteria (Fernandez de Palencia et al. 2009;
Garai-Ibabe et al. 2010), as well as exopolysaccharides pro-
duced by wine P. parvulus (Garcia-Ruiz et al. 2014). In this
regard, the ambivalent effect of EPS might depend on their
specific chemical nature (Fernandez de Palencia et al. 2009).
However, the contribution of extracellular polysaccharides in
bacterial in vivo adhesion to the intestinal epithelium has not
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Exopolysaccharides (EPS)

Intestinal epithelial cells (IECs)

Lamina propria

Fig. 3 Probiotic bacteria-intestinal epithelial cells (/ECs) and dendritic
cells (DCs) host interaction. Bacterial cells EPS-producing would adhere
to intestinal cells less than bacterial cells unable to produce EPS as the
surrounding layer of exopolysaccharides might shield specific factors on

yet been validated (Ruas-Madiedo et al. 2008). Recently, the
in vivo colonization and persistence of exogenous LAB in-
cluding L. plantarum Lp90, an EPS-producing strain, have
been reported, using zebrafish larvae (Russo et al. 2015).
Even in this case, contrasting data exist regarding the role of
EPS on bacterial adhesion passing from in vitro to in vivo
models. For instance, Chen and Chen (2013) reported the in-
ability to colonize permanently the intestine of germ-free mice
due to the EPS produced by L. kefiranofaciens. By contrast,
Lebeer et al. (2011) found a greater persistence of
L. rhamnosus GG with respect to its EPS-mutant strain in a
murine model, contrary to what was observed from a previous
in vitro model (Lebeer et al. 2009).

The intestinal epithelial cells (IECs) or dendritic cells
(DCs) can communicate with the human gastrointestinal mi-
crobiota through their pattern recognition receptors (PRRs),
which detect microorganisms-associated molecular patterns
(MAMPs) (Fig. 3). The interaction between MAMPs and
PRRs results in the induction of signaling cascades, which
determine a molecular response (i.c., cytokines, chemokines,
and antimicrobial agents’ immune-modulation) against the
detected microorganisms (Lebeer et al. 2010). The Gram-
positive bacteria cell wall contains several structural compo-
nents including exopolysaccharides that are fundamental in
the interaction mechanisms between probiotics and host re-
ceptors (Kleerebezem and Vaughan 2009).

Recently, it has been observed that some EPS present im-
munomodulatory properties, with a potential effect on human
health (Fernandez de Palencia et al. 2009; Liu et al. 2011;
Hidalgo-Cantabrana et al. 2012, 2014; Notararigo et al.
2014). Remus et al. (2012) suggested a shielding role of sur-
face polysaccharides L. plantarum cell envelope; likewise, the
exopolysaccharides produced by L. rhamnosus GG may pro-
tect by shielding effect against intestinal innate factors, such as
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the bacterial cell surface, thus hindering the adhesion process and the
recognition mechanisms with animal cells. Host pattern recognition
receptors (PRRs) recognize the bacterial cells by microorganisms
associated molecular patterns (MAMPs)

the antimicrobial peptide LL-37 (Lebeer et al. 2011). Chapot-
Chartier et al. (2010) reported that a novel cell wall polysac-
charide pellicle on the surface of L. lactis offers protective
barrier to the cell wall against host phagocytosis by murine
macrophages.

The ability of EPS to elicit immune responses is different
between LAB species or strains, and such differences are
tough to be related to the structure/size of EPS produced
(Hidalgo-Cantabrana et al. 2012). For example, acidic HePS,
characterized as having phosphate in their composition, are
able to induce the immune response as previously reported
in LAB used as starters in the dairy food industry (Kitazawa
et al. 1996; Hidalgo-Cantabrana et al. 2012). In contrast, high
molecular weight (HMW) HePS seem to act as suppressors of
the immune response (Hidalgo-Cantabrana et al. 2012).
Indeed, in Lactobacillus casei Shirota, the HMW HePS in-
duced the production of various cytokines by macrophages,
including IL-6 (Yasuda et al. 2008). However, knockout mu-
tants of genes involved in the synthesis of a HMW polysac-
charide were able to induce the production of TNFa, 1L-12,
IL-10, and IL-6 to a higher extent than the wild-type bacteri-
um (Yasuda et al. 2008; Hidalgo-Cantabrana et al. 2012).
Therefore, cell wall polysaccharide in L. casei Shirota may
be considered as an internal “switcher” able to regulate
(attenuate) the host immune response.

The ability of LAB to form biofilms and the relationship
between this capacity and their probiotic properties have been
recently reported. Although strain-specific, biofilm culture is
associated with some of the beneficial properties that charac-
terize probiotic bacteria. For example, biofilms are resistant to
gastrointestinal environment-related conditions and produce
extracellular factors that possess both immunomodulatory
properties and the ability to inhibit the growth of pathogens
(Rieu et al. 2014; Aoudia et al. 2016). Studies on the ability of
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microbial exopolysaccharides to form biofilm have been car-
ried out, although with conflicting results. Indeed, a negative
effect on biofilm formation was observed from the galactose-
rich cell wall-associated EPS produced by L. rhamnosus GG
(Lebeer et al. 2009), while Dols-Lafargue et al. (2008) report-
ed that the 3-glucan-containing capsules of P. parvulus and
Oenococcus oeni enhanced their adhesion capacities on abi-
otic surface. Therefore, the role of EPS in biofilm formation
could be affected by the chemical structure, relative quantity
and charge, properties of the abiotic surface, and surrounding
environment (Van Houdt and Michiels 2010).

Exopolysaccharides application in food industry

The industrial applications of microbial exopolysaccharides
are a topic of growing interest that has been smartly reviewed
by Zannini et al. (2016). In this contest, we will only summa-
rize some potentiality and critical aspects of EPS-producing
LAB in an industrial contest. The EPS produced by LAB are
able to modify the rheological properties, texture, and
“mouthfeel” of food products; thus, they would find applica-
tion in the food industry as viscosifiers, stabilizers, emulsi-
fiers, or gelling agents (De Vuyst and Degeest 1999;
Looijesteijn et al. 1999; Patel et al. 2012; Zannini et al.
2016). The availability of LAB starter cultures which produce
exopolysaccharides in situ during fermentation could be a
suitable alternative for products whose polysaccharides addi-
tion requires the specification as food additives, which is a
condition not much appreciated by consumer. Moreover,
LAB are “generally recognized as safe” (GRAS) due to their
long history of safe use in food production, and many of them
have the QPS (qualified presumption of safety) status
(Lahtinen et al. 2011). Further research on the use of cheaper
substrates, optimal fermentation conditions, and development
of mutant strains with high yield of EPS would be of funda-
mental importance. Indeed, the cost of production and the low
amount of EPS produced by LAB, compared to the commer-
cial value of microbial exopolysaccharides, are limiting factors
for their industrial applications (Nwodo et al. 2012; Zannini
et al. 2016). Currently, the highest production of microbial
exopolysaccharides is attributed to Xanthomonas campestris,
which produces 30-50 g/L of xanthan gum, an extracellular
heteropolysaccharide used as a food additive and rheology
modifier and whose industrial use is considered convenient.
Although the EPS yield produced by LAB is much lower, the
in situ applications in the manufacturing sector may be sustain-
able (Tsuda 2013). There is a wide range of bacteria EPS pro-
ducing with interesting industrial applications, but only xanthan
and gellan are authorized for the use as additives in the food
products in the USA and Europe (Donot et al. 2012).

In this regard, several authors studied the effect of LAB
exopolysaccharides on the rheological and sensorial properties

in yogurt (Hassan et al. 2003; Doleyres et al. 2005; Folkenberg
et al. 2006; Yang et al. 2014), the product of fermentation of
milk led by starter cultures of L. delbrueckii ssp. bulgaricus and
S. thermophilus in ratio 1:1. Both bacteria produce
exopolysaccharide from 30 to 890 mg/L for S. thermophilus
and from 60 to 150 mg/L for L. delbrueckii ssp. bulgaricus
(Bouzar et al. 1997; Marshall and Rawson 1999). It has been
found that exopolysaccharides contribute to improve the vis-
cosity and texture of yogurt and they do not alter the flavor of
the final product (Jolly et al. 2002; Badel et al. 2011). In a recent
report, the in situ production of EPS from Lactobacillus
mucosae improved the textural and rheological properties,
without affecting the yogurt starter cultures (London et al.
2015).

Since some decades, several studies on the influence of
microbial exopolysaccharides produced in situ during the fer-
mentation of bread were performed. Arendt et al. (2007) sug-
gested that exopolysaccharides produced by sourdough LAB
could be a valid and cheaper alternative to replace the more
expensive vegetal hydrocolloids. Production of dextran by
Weissella confusa significantly increased the viscosity of the
sourdoughs, providing mild acidic wheat bread with a greater
volume and softness of the loaf (Katina et al. 2009).
Oligosaccharides produced by W. cibaria and L. reuteri have
been used in order to evaluate the influence of in situ EPS
secretion in dough rheology and quality of gluten-free sor-
ghum bread, resulting in an improved bread-making potentials
(Galle et al. 2012). This is a promising application of bacterial
EPS, because one of the main problems of gluten-free bakery
products regards to the rheological properties that are less
satisfactory than conventional products. Furthermore, the ad-
dition of sourdoughs fermented with starter cultures produc-
ing exopolysaccharides could increase the prebiotic amount in
gluten-free breads (Schwab et al. 2008).

EPS production by wine LAB: ropy and non-ropy
phenotype

Although EPS-producing LAB are potentially important mi-
croorganisms for industrial application (Badel et al. 2011;
Zannini et al. 2016), in alcoholic beverages such as wine,
EPS-producing LAB are sometimes responsible of an alter-
ation known as “ropiness” or “oiliness,” characterized by a
viscous texture and oily feel and responsible of considerable
economic loss (Gindreau et al. 2001). In most cases, the rop-
iness develops slowly and became evident weeks or months
after bottling. The ropiness appearance in wines is mainly due
to the presence of wine LAB such as P. parvulus (Dols-
Lafargue and Lonvaud-Funel 2009) and Pediococcus
damnosus (Lonvaud-Funel 1999; Gindreau et al. 2001) har-
boring a “ropy” phenotype.
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The biological role of the ropy phenotype in wine LAB is
probably associated to the ability to tolerate or overcome stress
commonly encountered in wine (Spano and Massa 2006). For
example, some ropy strains of P. parvulus exhibited a strong
resistance to harsh conditions in wine including ethanol, pH,
and SO, stress (Lonvaud-Funel and Joyeux 1988; Lonvaud-
Funel 1999; Velasco et al. 2006; Dols-Lafargue et al. 2008;
Coulon et al. 2012). Dols-Lafargue et al. (2008) showed that
wild or recombinant oenological bacterial strains, harboring a
functional gtf'(glycosyltransferase) gene, were more resistant to
several stresses occurring in wine not only in alcohol, but also
pH, and SO,. By contrast, Walling et al. (2005) reported that
EPS produced by P. damnosus were unlinked to ethanol stress.

The use of lysozyme in winemaking process has been le-
galized in some countries in alternative to sulfur dioxide ad-
dition in order to inhibit native LAB population and to delay
malolactic fermentation (Lerm et al. 2010). Interestingly,
Coulon et al. (2012) found a P. parvulus strain from ropy
wine, able to synthesize a 3-glucan, which confers tolerance
to lysozyme stress by shielding effect of EPS around the cell
wall.

A well management of the wine fermentation process may
make the ropiness appearance in wines quite rare, although
LAB with ropy phenotype may be even isolated from non-
ropy wine. The ability to synthesize EPS by wine LAB in non-
ropy wine is sometimes common. For example, O. oeni, one
of the best adapted LAB to resist the harsh wine conditions
and the most utilized species for commercial malolactic fer-
mentation (MLF) starter preparation (Capozzi et al. 2010;
Maitre et al. 2014; Betteridge et al. 2015), is able to release
EPS into the wine during spontaneous as well as during induced
MLF (Dols-Lafargue et al. 2007; Dimopoulou et al. 2014).

Ropy phenotype

B

.

-

Several O. oeni strains able to produce EPS are isolated from
non-ropy wine without altering this product in a medium term
(Ciezack et al. 2010). The EPS produced by O. oeni vary,
depending on the strain and media used, and this variability is
probably due to distinct biosynthetic pathways that can even
coexist in some O. oeni strains (Ciezack et al. 2010;
Dimopoulou et al. 2016). The natural propensity of some O.
oeni strains to form a polysaccharide capsule is connected to an
improved survival during production and conservation process-
es (Dimopoulou et al. 2016).

In addition to O. oeni, several studies indicate that wine
L. plantarum strains retain excellent potential and characteris-
tics that would make it suitable as MLF starter in wine
(Berbegal et al. 2016). This feature is even associated to the
ability of L. plantarum to overcome food stresses (Fiocco et al.
2007; Fiocco et al. 2009; Capozzi et al. 2011). L. plantarum
strains with ropy phenotype were recently identified in non-
ropy wine during spontaneous MLF. Preliminary results sug-
gest that, compared to “non-ropy” strains, the ropy phenotype
of L. plantarum is associated to low pH tolerance.

Although further works needed to unreveal the mecha-
nisms responsible for the stress tolerance observed, the exter-
nal barrier made by capsular and/or ramified EPS may phys-
ically protect cell wall by lysozyme, SO,, and/or ethanol stress
in wine LAB able to produce EPS or harboring a ropy pheno-

type (Fig. 4).

Conclusions

The industrial application of EPS-producing LAB or EPS from
LAB, ranges from food fermentation to prebiotic/probiotic

Non-ropy phenotype

Tolerance to:

|

Lysozyme
(e.g., Pediococcus paivalus)

Production and storage
(e.g., Oenococcus oeni)

Low pH
(e.g., Lactobacillus plantarum)

Ethanol and SO,
(e.g., Pediococcus damnosus)

Fig. 4 EPS and stress tolerance. EPS-producing strains of lactic acid
bacteria (LAB) isolated from induced or spontaneous malolactic fermen-
tation (MLF) may tolerate stress commonly found in wine if they are able
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to display a “ropy phenotype” (a). The “non-ropy phenotype,” but still
EPS producer, has been recently associated to an improved tolerance to
production and storage in the wine MLF starter Oenococcus oeni (b)
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applications. For example, the use of EPS-producing LAB in
the “in situ” fermentation process may improve the rheological
and sensorial properties of fermented food. This aspect could be
particularly advantageous for the food industries, as the micro-
bial EPS could be used in substitution to the current hydrocol-
loids of plant origin. However, the low amount of EPS pro-
duced by LAB and the identification of high yields-producing
strains with desirable properties linked to their use in food may
be considered a critical step in such application (Zannini et al.
2016).

Prebiotics and/or probiotic properties are frequently attrib-
uted to LAB EPS or LAB-producing EPS. It has been claimed
that some EPS reduce cholesterol levels, act as fermentable
(prebiotic) substrates for intestinal microbiota, and modulate
the immune response. However, contrasting finding are re-
ported on the impact of microbial EPS on growth of probiotics
or stimulation of intestinal epithelial cells as well as tolerance
to human gastrointestinal tract transit. Therefore, the physico-
chemical characteristics of EPS must be the key parameters
determining their biological and functional properties. The
strains-dependent ability to use different EPS may be even
responsible of the differences noted.

Finally, the EPS produced by LAB may be considered as
an additional piece of the stress response machinery devel-
oped by LAB. This feature may be sometimes useful to im-
prove robustness of microbial starters, taking in account that
LAB displaying a ropy phenotype are sometimes associated
with spoiled fermented beverages.
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