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ABSTRACT
This review explores the emerging term “gut-skin axis” (GSA), describing the bidirectional signaling that 
occurs between the skin and the gastrointestinal tract under both homeostatic and disease conditions. 
Central to GSA communication are the gut and skin microbiota, the microbial communities that 
colonize these barrier surfaces. By influencing diverse host pathways, including innate immune, vitamin 
D receptor, and Aryl hydrocarbon receptor signaling, a balanced microbiota contributes to both tissue 
homeostasis and host defense. In contrast, microbiota imbalance, or dysbiosis at one site, can lead to 
local barrier dysfunction, resulting in the activation of signaling pathways that can disrupt tissue 
homeostasis at the other site, potentially leading to inflammatory skin conditions such as atopic 
dermatitis and psoriasis, or gut diseases like Inflammatory Bowel Disease. To date, most research on 
the GSA has examined the impact of the gut microbiota and diet on skin health, but recent studies 
show that exposing the skin to ultraviolet B-light can beneficially modulate both the gut microbiome 
and intestinal health. Thus, despite the traditional focus of clinicians and researchers on these organ 
systems as distinct, the GSA offers new opportunities to better understand the pathogenesis of 
cutaneous and gastrointestinal diseases and promote health at both sites.
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Introduction

The human body develops and grows while in con-
stant contact with its external environment, primar-
ily through two interfaces, namely the skin and the 
gastrointestinal (GI) tract. Both sites receive an array 
of environmental signals that are transduced to dee-
per tissues, usually eliciting beneficial and/or 
homeostatic responses. Unfortunately, they also 
represent vulnerable target sites for both biotic and 
abiotic threats. While their embryonic origins differ, 
with the skin arising from ectoderm and the gut 
forming from complex interactions between the 
endoderm and mesoderm, these organs share 
many fundamental structural and functional 
similarities.1,2 Both are lined by epithelial cells that 
serve as protective barriers, that are supported, and 
strengthened by signals from underlying stromal 
and immune cells.3 Furthermore, they are both 
extensively vascularized and innervated, allowing 
rapid communication with the immune and central 
nervous systems, thereby facilitating rapid responses 
to environmental threats.4 Notably, both surfaces 

host diverse communities of commensal microbes, 
collectively known as the microbiome.

Many studies have demonstrated significant 
immune cell transit and communication between 
distinct mucosal associated lymphoid tissues 
(MALT),5 such as the GI tract and the lungs, poten-
tially as a means to broadly promote mucosal immu-
nity and defense. In recent years, a growing body of 
research has also revealed significant signaling/cellu-
lar crosstalk between the skin and the gut, despite 
being apparently unrelated organ systems.6 Termed 
the gut-skin axis (GSA), the communication path-
ways connecting these two organs are mediated by 
an array of cytokines,7–10 microbial metabolites,11,12 

hormones13,14 and neurotransmitters.15,16 These 
molecules have emerged as key players in maintain-
ing tissue homeostasis and coordinating systemic 
responses to various stimuli. Among these mole-
cules, hormones such as vitamin D, as well as key 
microbial metabolites, including Aryl hydrocarbon 
receptor (AhR) ligands, have been associated with 
modulating immune responses and metabolic 
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processes, thereby influencing health outcomes 
throughout the body. Moreover, the effects of envir-
onmental factors, such as ultraviolet B (UVB) radia-
tion on the skin, extend beyond those tissues that are 
directly affected, modulating the functions of distant 
organs, including the gut.17

This review provides a summary of recent findings 
that support the concept of bidirectional communica-
tion between the skin and the gut, as well as the roles 
played by various molecular players, including but not 
limited to microbial metabolites, signaling molecules, 
and environmental factors. By elucidating these path-
ways, we seek to deepen our understanding of how 
diverse environmental signals promote tissue home-
ostasis, as well as propose that UVB light may offer 
a novel therapeutic approach for the human GI tract, 
acting via the GSA.

Gut and skin barrier functions

The skin is composed of three layers: the hypodermis 
(deepest layer), dermis and epidermis.18 The epider-
mis, along with its appendage structures (i.e. hair 
follicles, sebaceous and sweat glands), is the first 
barrier encountered by the external environment 
and is colonized by, and constantly stimulated by 
an array of skin dwelling microorganisms including 
bacteria, fungi, viruses, and parasites.6 Likewise, the 
gut is protected by an epithelial barrier that safe-
guards the host by segregating potentially noxious 
factors such as pathogenic bacteria, viruses and food 
antigens inside the gut lumen.19 Among the cells that 
comprise this barrier, goblet cells (a subset of intest-
inal epithelial cells (IEC)) synthesize mucus that 
forms a protective physiochemical gel that overlies 
and supports the epithelium, while other secretory 
IEC release molecules that regulate immune 
responses, exert antimicrobial actions and aid in 
epithelial repair.20 The gut epithelial barrier is main-
tained through tight junction proteins like zonula 
occludens, claudins, and occludin, which play 
a crucial role in sealing the paracellular space and 
regulating IEC permeability.21 Disassembly of these 
proteins can result in increased intestinal permeabil-
ity, also known as “leaky gut”, leading to the passage 
of luminal factors such as bacterial and dietary com-
ponents into the gut mucosa and systemic circula-
tion, thus triggering inflammation.21

Innate and adaptive immunity in the gut and 
skin

Consistent with their frequent exposure to environ-
mental threats, the skin and gut both harbor an array 
of cells that can elicit protective immune and antimi-
crobial responses. Specifically within the dermis of the 
skin, several innate immune cell types are present, 
such as dendritic cells, macrophages, as well as γδ 
T lymphocytes and innate lymphoid cells (ILC).22 As 
the largest immune organ in the body, the GI tract 
contains a similar array of innate immune cells, but at 
higher densities.23 Moreover, IEC serve as an essential 
component of innate intestinal defense, expressing 
pattern-recognition receptors such as Toll-like recep-
tors (TLRs) and nucleotide-binding oligomerization 
domain (NOD)-like receptors, allowing them to 
rapidly respond to threats. For example, a subset of 
secretory IEC called “sentinel goblet cells” were 
recently shown to recognize pathogenic stimuli 
through TLRs, and respond by rapidly releasing 
mucus in an inflammasome dependent manner.24 

Additionally, IEC actively protect against pathogen 
colonization through the production of antimicrobial 
peptides (AMPs), while infected IEC can undergo 
inflammasome-induced pyroptosis, expelling invad-
ing pathogens back into the gut lumen.25 Similarly, 
keratinocytes in the skin express various TLRs, 
enabling them to sense bacterial infections and pro-
duce AMPs that exert antimicrobial activity and che-
mokines that promote immune cell recruitment.26,27

Both the skin and gut also contain specialized 
subsets of dendritic cells that sample antigens from 
their surroundings and regulate immune responses. 
Correspondingly, diverse T cell subsets reside within 
these tissues, including regulatory T cells (Tregs), 
effector T cells, and memory T cells, which are crucial 
for immune regulation, surveillance, and the devel-
opment of immune responses to pathogens.28 

Moreover, tissue macrophages, which are essential 
for immune surveillance, inflammation, and tissue 
balance, are found in abundance in both organs, 
along with mast cells which are best known for their 
roles in host defense and allergic reactions.29,30

Microbiota in gut and skin health

The human gut and skin are colonized by diverse 
microbes, collectively termed the microbiota, with 
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the skin carrying 104 -106 microbial cells per cm231 

while microbial density in the gut can reach 1011 

microbes per gram of fecal material.32 Under 
healthy conditions, the host and its microbiota 
symbiotically co-exist, with the host’s skin and 
gut providing a place to reside as well as nutrients 
for the microbes. The specific compositions of the 
gut and skin microbiotas, as well as their respective 
functions are outlined below.

The human skin is colonized at birth by an array 
of microorganisms such as bacteria, archaea, 
viruses and fungi, with the mode of delivery greatly 
impacting the infant’s initial skin microbiota 
profile.33–35 Neonates born vaginally initially carry 
a skin microbiota signature closely resembling their 
mother’s vaginal bacteria, predominately featuring 
Lactobacillus spp. Conversely, infants delivered by 
cesarean section often display lower skin microbial 
diversity,36–38 being mainly colonized by environ-
mental microorganisms and those from their 
mother’s skin, including Staphylococcus, 
Corynebacterium, and Propionibacterium 
species.36 This initial colonization by commensal 
bacteria appears to play an important role in estab-
lishing immune tolerance,34 as the presence of skin 
bacteria causes Tregs to express the FOXP3 tran-
scription factor, a critical step in developing their 
immunoregulatory functions.39 Within four to six 
weeks after birth, the infant’s skin microbiome 
increases in diversity, aligning more closely with 
their mother’s skin microbiome.38 The ability of 
these microbes to protect the infant’s skin from 
external threats is particularly important as chil-
dren have underdeveloped immune systems and 
vulnerable skin barriers. Certain bacteria such as 
Staphylococcus epidermidis and Staphylococcus coh-
nii are known to protect infants from skin condi-
tions like atopic dermatitis (AD) or eczema (an 
inflammatory disorder characterized by dry and 
scaly skin).40 While S. epidermidis is generally con-
sidered a beneficial commensal, its protective 
effects appear to be strain specific as recent studies 
have shown that certain strains of S. epidermidis 
can induce the expression of pro-inflammatory 
mediators, such as the cytokine IL-1β,41 which 
can explain the observed correlation between the 
higher abundance of S. epidermidis and the most 
severe cases of AD in both adults42,43 and 
infants.44,45

Throughout the infant’s development, commen-
sal bacteria continue to influence the production of 
various cytokines and AMPs, thereby strengthen-
ing the skin’s defenses against pathogens. For 
example, bacteria like S. epidermidis can stimulate 
the production of calprotectin S100A8/9 from ker-
atinocytes via interleukin (IL)-17 producing CD8+ 

T cells, and produce lipoteichoic acid that suppress 
inappropriate immune activation by inhibiting the 
production of the pro-inflammatory cytokines 
tumor necrosis factor (TNF)-α and IL-6.46,47 

During adolescence, a significant shift occurs in 
the skin microbiome, with Firmicutes, 
Bacteroidetes, and Proteobacteria (β- and γ) giving 
way to the more lipophilic Actinobacteria. This 
shift can lead to an imbalance in the skin micro-
biota known as dysbiosis, and potentially contri-
bute to skin disorders such as acne vulgaris.48 

Ethnicity and geographical differences have also 
been described to influence skin properties, result-
ing in distinct skin microbiota compositions across 
populations.49,50 The most notable differences in 
skin bacterial profiles are associated with body site, 
as reflected by their different physiologic charac-
teristics such as humidity, temperature, pH, lipid 
and sebum content and AMP expression.33,51–54 

Interestingly, several skin sites including the fore-
arm, palm, index finger, back of the knee, and the 
sole of the foot harbor microbiomes with higher 
phylogenetic diversity as compared to the gut 
microbiome.54 Hygiene practices, the type of cloth-
ing worn, diet, medications, and environmental 
conditions, including sunlight exposure, can also 
modulate skin bacterial communities over time, 
leading to an evolving microbiome 
composition.54,55

The human gut is also colonized by microbes 
immediately after birth and is influenced by the 
infant’s mode of delivery and subsequent diet (i.e. 
breastfeeding vs. formula). The GI tract, and espe-
cially the colon, harbor the largest bacterial load in 
the human body, with more than five million dif-
ferent genes carried by 1,000 to 1,500 distinct bac-
terial species that comprise the gut microbiota, 
belonging to the genera Bacteroidetes, Firmicutes, 
Actinobacteria, Proteobacteria, Fusobacteria, 
Cyanobacteria, and Verrucomicrobia.56 The gut 
microbiota exert an array of functions, such as 
aiding in the digestion of food, promoting immune 
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system development and defense against patho-
gens, vitamin biosynthesis, fat storage and angio-
genesis while also producing important metabolites 
such as the short chain fatty acids (SCFA) acetate, 
propionate and butyrate.57 Strikingly, the gut 
microbiota also influences mood and behavior, as 
it has been linked to the pathogenesis of several 
neuropsychiatric disorders and abnormal beha-
viors in animal models.58,59

After their initial colonization, the community 
of gut microorganisms gradually develops into 
a diverse ecosystem as the host ages and grows. 
Microbes and the host immune system mature 
together through a cooperative relationship, 
where the host provides food, while commensal 
microbiota help protect the host against enteric 
pathogens and other noxious stimuli.60,61 Similar 
to the skin, gut bacteria such as Bacteroides fragilis 
and certain Clostridium species can trigger an 
increase in the local population of Foxp3+ Treg 
cells, thereby contributing to immune tolerance to 
commensal microbes.62 Additionally, macrophages 
in the intestinal lamina propria specialize in pha-
gocytosing pathogens, exhibiting less pronounced 
pro-inflammatory responses as compared to 
macrophages at other tissue sites.63 This adaptation 
suggests that the host adjusts to the presence of 
a large population of commensal microbiota, by 
minimizing the risks of triggering unnecessary or 
exaggerated inflammatory responses.64

Microbiota in gut and skin disease

As noted above, microbial dysbiosis refers to an 
imbalanced microbiota community, often character-
ized by reduced bacterial diversity and stability. Gut 
microbiota dysbiosis has been implicated in the 
development and progression of various conditions, 
including atopic asthma, mental health disorders 
(depression, schizophrenia, addiction), obesity, 
type 2 diabetes, cardiovascular diseases, and auto-
immune disorders like rheumatoid arthritis and 
multiple sclerosis (MS).65–67 Moreover, GI condi-
tions, including inflammatory bowel disease (IBD) 
and irritable bowel syndrome (IBS), have been asso-
ciated with an altered gut microbiota profile in 
comparison with healthy subjects, as microbial dys-
biosis can influence gut physiology, nutrient absorp-
tion, and the host’s immune system.

We suspect that in many cases, inflammation, 
whether originating in the intestine or the skin, 
may be initially triggered by a dysbiotic gut 
microbiota, providing a starting point for the 
GSA to negatively impact the skin.68 Notably, 
intestinal microbial dysbiosis often triggers sys-
temic inflammation, in association with altera-
tions in microbial metabolic capacity (i.e. 
nutrient metabolism, lipid metabolism, vitamins 
B and K synthesis, detoxification and hormone 
metabolism) which may affect other organ sys-
tems, including the skin, thus disrupting cuta-
neous homeostasis.69–74 Moreover, intestinal 
microbial dysbiosis is associated with T-cell acti-
vation as well as impaired production of immu-
nosuppressive cytokines and Treg cells, which 
together, are essential for maintaining host toler-
ance to the microbiota.69 Whether skin microbial 
dysbiosis can initiate similar detrimental effects 
at distal sites, such as the GI tract has received 
less attention, but should be a priority for future 
studies.

The transition from microbial dysbiosis to the 
promotion of disease is complicated and involves 
multiple interconnected mechanisms. Disruptions 
in gut microbiota can compromise intestinal bar-
riers, increasing permeability (“leaky gut”) and 
triggering systemic inflammation.75 This imbal-
ance also promotes immune dysregulation, includ-
ing to the overactivation of pro-inflammatory 
pathways (Th1, Th17), causing impaired immune 
tolerance.76 Furthermore, shifts in the levels of 
microbial metabolites, such as reduced SCFAs 
and increased harmful byproducts, can exacerbate 
inflammation and tissue damage.77–79 Genetic pre-
disposition and environmental factors, such as diet, 
stress, and antibiotic use, can further contribute to 
disease progression.80,81 It should be noted that 
further studies are required to understand these 
relationships, as a prerequisite to developing tar-
geted therapies to restore microbial balance and 
alleviate subsequent symptoms and pathology.

Dysbiosis may also significantly impact intest-
inal stem cells (ISCs), which are critical for main-
taining gut integrity and function, and by 
extension, the gut-skin axis. A healthy microbiota 
supports ISC proliferation and differentiation, but 
dysbiosis can impair these functions, compromis-
ing gut barrier integrity and increasing 
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permeability.82 This disruption can drive microbial 
translocation and subsequent systemic inflamma-
tion, which can exacerbate skin conditions.83 

Microbes and their metabolic products can directly 
and/or indirectly interact with ISCs, influencing 
the stem cell niche and modulating epithelial func-
tion, regeneration, and repair.84 The link between 
dysbiosis and skin inflammation is highlighted by 
findings of elevated gut bacterial DNA in the 
bloodstream of patients with chronic skin 
disorders.85 As already mentioned, dysbiosis 
reduces the production of SCFAs, which normally 
play a critical role in supporting ISC function, 
epithelial barrier integrity, and in mitigating 
inflammation.11,68 In addition, dysbiosis can alter 
the regulation of ISCs through TLR and NOD 
pattern recognition receptors, which are influenced 
by the intestinal microbiota. Key microbial com-
munities involved in these pathways include 
Fusobacteria, Proteobacteria, Firmicutes, 
Lachnospiraceae, Coriobacteria, Helicobacter pylori, 
and Vibrio cholerae. Specific bacteria, such as 
Serratia marcescens, Erwinia carotovora caroto-
vora-15, and Pseudomonas entomophila are 
known to contribute to intestinal homeostasis, 
injury repair, and the maintenance of ISC function 
through these mechanisms.82

Associations between GI and cutaneous dis-
eases are well-supported by previous studies,4 as 
depicted in Figure 1. Notably, 10% to 25% of 
patients with GI diseases such as IBD and Celiac 
disease also experience skin pathology, including 
psoriasis (characterized by scaly plaques and 
hypertrophic skin lesions), and cutaneous 
ulcers.4,86 Celiac disease, which is characterized 
by intestinal malabsorption, commonly co- 
presents with dermatitis and psoriasis as cuta-
neous manifestations, whereas patients with rosa-
cea (a chronic inflammatory skin condition that 
causes reddened skin and rash) frequently exhibit 
small intestinal bacterial overgrowth (SIBO).87 

Peutz -Jeghers Syndrome, which is characterized 
by GI polyposis and malignancy, often features 
perioral hyperpigmentation as a common cuta-
neous manifestation.86 Additionally, IBD patients 
frequently experience skin manifestations such as 
skin ulcers, vasculitis, hair loss, erythema follicu-
litis, and psoriasis,4,86 with some of these condi-
tions linked to the severity of the patient’s GI 

inflammation.88 Notably, intestinal colonization 
with Malassezia restricta, a commensal fungus 
and frequent member of the skin microbiota, 
may contribute to the pathogenesis of Crohn’s 
disease (one form of IBD), in a subset of patients, 
with its presence correlating with increased dis-
ease severity.89 While these findings implicate 
a member of the skin microbiome in the patho-
genesis of IBD, the underlying mechanisms have 
not yet been fully elucidated; but others have 
suggested that both the immune and endocrine 
systems play an important role in this 
interaction.69

Extensive pre-clinical research has shown that 
modulation of the gut microbiota can exert 
a positive impact on the cutaneous system, especially 
through the administration of beneficial microbes 
known as probiotics. Levkovich and colleagues90 

found that oral supplementation of the probiotic 
Lactobacillus reuteri ATCC 6475 to aged mice 
resulted in improved skin health, including increased 
dermal thickness, enhanced folliculogenesis, a more 
acidic skin pH, and heightened sebum production in 
comparison with aged mice not given the probiotic. 
These benefits appeared to be immune mediated as 
probiotic-fed mice showed increased serum levels of 
the anti-inflammatory cytokine IL-10 and decreased 
levels of the pro-inflammatory cytokine IL-17. 
Another probiotic strain (Lactobacillus acidophilus 
KBL409) orally administered to mice was shown to 
attenuate AD and decrease the infiltration of immune 
cells into skin tissues.91 In addition to increasing IL- 
10 levels and Foxp3 expression in mice, probiotics 
have also been shown to modulate the gut microbio-
ta’s production of metabolites such as SCFA and 
amino acids. The reduced dermatitis scores found in 
these studies demonstrate that probiotic bacteria can 
exert positive effects beyond the gut, through 
a coordinated modulation of both the immune sys-
tem and the gut microbiota. For instance, Mendelian 
randomization (MR) studies reveal causal links 
between gut microbiota and skin disorders, including 
eczema, acne, psoriasis, and rosacea.92 For example, 
Eubacterium fissicatena is linked to psoriasis risk,93 

while gut bacteria may influence skin fibrosis.94 These 
findings highlight the therapeutic potential of micro-
biota modulation.

Studies in humans also point to the immune 
system and the gut microbiota as key contributors 
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to the overlap seen between gut and skin condi-
tions. For example, a recent study found an asso-
ciation between gut microbial dysbiosis and AD. 
The authors showed that clinical improvement of 
the skin in response to the medication dupilumab, 
a monoclonal antibody that blocks interleukin 4 
and interleukin 13, were due to dupilumab’s effects 
on gut bacterial function, by regulating the indole 
pathway of tryptophan metabolism.95 This effect is 
likely associated with dupilumab’s suppression of 
Th2 immune responses, leading to pleiotropic anti- 
inflammatory actions observed throughout the 
body including in both skin and gut.96,97 

Moreover, several clinical trials have shown bene-
ficial effects of oral probiotic administration on 
skin diseases such as AD,98 psoriasis99 and acne 
vulgaris.100 The potential benefits of oral probiotics 
have also been explored for the skin condition 
rosacea, with higher remission rates seen in 

patients that consumed a mixture of 
Bifidobacterium species in addition to the standard 
antibiotic treatment.101

The impact of gut microbiota composition and 
its metabolites has also been explored in allergic 
skin diseases. A study by Trompette and collea-
gues found that administration of dietary fiber or 
its byproducts ie. SCFAs and in particular buty-
rate, attenuated allergen-induced skin barrier 
breach in a mouse model that mimics AD-like 
skin inflammation in humans.102 This protection 
was associated with accelerated epidermal kerati-
nocyte differentiation, which increased the pro-
duction of key structural skin components such 
as proteins and lipids. Moreover, butyrate 
enhanced skin barrier function by directly shap-
ing keratinocyte metabolism and eliciting 
a mitochondria-dependent differentiation pro-
gram. These results support previous findings 

Figure 1. Links between GI disorders and cutaneous diseases. In high-latitude locations, reduced sunlight, especially during winter leads 
to decreased UVB light exposure and subsequently lower serum vitamin D levels. This decline leads to changes in the GI tract, including 
a reduction in epithelial tight junction proteins. Many patients with IBD are vitamin D insufficient or deficient, with a higher occurrence in 
CD than UC. Decreased UVB exposure also leads to reduced conversion of trans-urocanic acid (UCA) to cis-uca, which has been linked to 
chronic skin inflammation. In IBD patients, gut microbial dysbiosis leads to reduced short chain fatty acid (SCFA) levels, which is a key 
bacterial metabolite affecting both gut and skin health. Skin conditions such as psoriasis, acne, atopic dermatitis, and vitiligo are often 
associated with reduced AhR expression/activation. Several AhR ligands, including indole derivatives can impact skin health by 
modulating inflammation and oxidative stress. Patients with IBD exhibit decreased production of endogenous AhR ligands in their 
feces, likely as a result of microbial dysbiosis, which may contribute to their impaired mucosal healing. Created in BioRender.com.
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that butyrate can modulate immune responses in 
the skin,103,104 and that it is also reduced in 
children and infants diagnosed with AD,105,106 

as well as in children that develop allergic reac-
tions later in childhood.107

Communication pathways in the gut-skin axis

The relationship between the gut and skin is high-
lighted by the vital role of the microbiota in facil-
itating communication between these two systems. 
Further defining the communication pathways that 
underlie the GSA is key to understanding both its 
role in disease pathogenesis, and its potential ther-
apeutic applications. Alongside the microbiome, 
various metabolites and micronutrients serve as 
essential components of the GSA dialogue, with 
the specifics outlined below.

Gut communication with the skin

The most common assumption regarding the GSA is 
that the communication largely occurs in only one 
direction, ie. the gut communicates with, and thereby 
impacts the skin. This assumption stems from the 
crucial roles played by the gut microbiota in an 
array of metabolic and immune functions that can 
impact the entire body and thus influence skin health. 
Members of the gut microbiota metabolize indigesti-
ble complex polysaccharides into essential nutrients, 
including vitamin K and the water soluble B vitamins, 
which are associated with wound healing and meta-
bolic functions such as DNA replication, repair and 
methylation, respectively.108,109 Moreover, the gut 
microbiota produce their own (i.e. bacterial) metabo-
lites such as SCFA, which have been described as 
important signaling factors in the GSA as they can 
alleviate skin inflammation.11

Diet is recognized as a major factor influencing 
the composition and function of the gut micro-
biota, highlighting the importance of dietary pat-
terns and specific nutrients in the GSA. The 
western dietary pattern, which is rich in saturated 
fats as well as refined carbohydrates, is often asso-
ciated with reduced microbial diversity and higher 
luminal concentrations of bacterial cell wall com-
ponents such as lipopolysaccharides, which can 
negatively affect gut barrier function and trigger 
systemic inflammation.110 Additionally, a diet 

containing excessive levels of animal protein can 
favor the production of metabolites such as indoxyl 
sulfate, Trimethylamine-N-oxide (TMAO) and 
p-cresyl sulfate, that are linked to psoriatic arthritis, 
a chronic inflammatory disease affecting the joints 
and connective tissue that is commonly seen in 
patients with psoriasis.111,112 Conversely, a high- 
collagen diet has been shown to be beneficial with 
respect to skin aging and wound healing, empha-
sizing that different sources of protein may exert 
quite divergent effects on the skin.113,114 Moreover, 
a dietary pattern favoring oily fish and olive oil has 
been associated with a reduction in skin inflamma-
tion due to their high levels of omega 3 and mono- 
unsaturated fatty acids, respectively.115–119 In addi-
tion to macronutrients, the consumption of dietary 
fiber is largely considered beneficial for overall 
health. Fibers such as inulin and resistant starch 
cannot be digested by the human body but instead 
rely on the microbiota to be fermented, in a process 
that increases the population of beneficial gut 
microbes and their metabolites, such as SCFA, 
which can promote skin health.120

In addition to the indirect effects of diet on skin 
health via modulation of the gut microbiota, different 
ingested nutrients can directly support skin structure 
and function. While most studies focus on dietary 
compounds as supplements, it is important to note 
the effects elicited by whole foods on specific aspects 
of the GSA as a way to explore targeted dietary 
recommendations for skin conditions. The 
Mediterranean diet, rich in plant-based and healthy 
fat foods, is associated with a lower incidence of 
several chronic inflammatory diseases, including der-
matological conditions.121 Plant-based foods such as 
vegetables, fruits, legumes and nuts are considered 
rich sources of bioactive compounds, including car-
otenoids, vitamins, and polyphenols, which play a key 
role in maintaining skin health.122,123

Vitamin C, which is abundant in many fruits 
and vegetables, plays a crucial role in collagen 
synthesis and acts as a potent antioxidant, pro-
tecting the skin from the damage caused by 
reactive oxygen species (ROS).124 Moreover, 
vitamin C works synergistically with vitamin E, 
a powerful antioxidant present in fruits such as 
avocado, that together can reduce skin aging 
and increase level of moisture. The effects of 
specific foods rich in vitamin C have also been 
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studied, with mango, particularly the Ataulfo 
variety, reducing deep facial wrinkles in post-
menopausal women after 16 weeks of interven-
tion when consumed in moderation.125 

However, portion sizes are key for dietary 
recommendations, as individuals who ingested 
250 g of mango experienced an increase in wrin-
kles. This result could potentially be attributed 
to the sugar content of the fruit, as glucose and 
fructose can enhance the glycation process of 
collagen and elastin fibers, thereby compromis-
ing the structural integrity of the subcutaneous 
tissue that provides support to the skin.126

Polyphenols also seem to play an important 
role in skin health, with a study showing that 
cocoa flavanol supplementation reduced facial 
wrinkles and improved skin elasticity after only 
24 weeks in photo-aged women.127 Additionally, 
supplementation with grape seed extract, rich in 
polyphenols such as anthocyanins, flavanols, and 
resveratrol,128–130 has also shown benefits in mel-
asma, a common skin condition characterized by 
dark skin patches.131 Carotenoid-rich foods such 
as tomatoes, which are also rich in lycopene, 
exhibit robust antioxidant properties, offering 
protection against UV-induced skin 
erythema,132,133 while daily consumption of 
a carotenoid-rich kale extract was found to 
improve collagen and elastin levels, enhancing 
skin health.134

Intake of nuts such as almonds have also been 
associated with skin health benefits by contributing 
to antioxidant defense and reducing wrinkles.135 

Additionally, legumes such as soybeans contain 
isoflavones, bioactive compounds that exhibits 
estrogen-like properties. As a result, their con-
sumption can mitigate the reduced estrogen levels 
seen during menopause, thereby improving the 
typical skin wrinkling, dryness, and poor wound 
healing.136 Thus, a diverse diet, rich in nutrient- 
dense whole foods not only benefits the gut micro-
biota composition profile but also directly provides 
the essential nutrients and antioxidants needed to 
promote skin health and delay signs of aging.

Skin communication with the gut

In contrast to the well-studied roles that dietary 
components and the gut microbiome play in 

affecting skin health, the inverse direction of the 
GSA has received much less attention. We know 
that an array of external environmental factors 
such as pollution, smoking, climate, and sun expo-
sure impact the skin directly.137 In this section, we 
will discuss how skin responses to specific stimuli 
impact the gut, highlighting the importance of 
vitamin D and tryptophan metabolites as key 
examples of the bidirectional communication 
between the GI tract and the skin. By focusing on 
these compounds, we seek to show how external 
factors, such as ultraviolet (UV) radiation, influ-
ence the skin and, in turn, affect gut health.

Vitamin D signaling
Calciferol, also known as vitamin D, is a fat-soluble 
vitamin that can be obtained from the diet as it is 
naturally found in oily fish and eggs, while break-
fast cereals and milk are often fortified with vita-
min D. In addition to dietary sources, vitamin D is 
also produced by the human body in response to 
sunlight; skin exposure to UVB light can lead to the 
production of vitamin D within the epidermis, 
from the precursor chromophore 7--
dehydrocholesterol.138 Recently, exposing the skin 
to UVB light was shown to modulate the gut 
microbiota composition of vitamin D insufficient, 
but otherwise healthy women.17 The exact mechan-
isms by which vitamin D alters gut microbiota 
composition are unclear, but they likely include 
increased innate immune signaling, the downregu-
lation of inflammation, and strengthening of 
intestinal barrier function.139

In both the skin and gut, vitamin D receptor 
(VDR) activation plays a critical role in regulating 
the production of AMPs such as cathelicidin, 
which help maintain microbiota homeostasis and 
provide protection against pathogens.140,141 

Vitamin D itself also induces the expression of 
antimicrobial peptides in human keratinocytes, 
monocytes, and neutrophils,142–144 since the pro-
moters of the human cathelicidin antimicrobial 
peptide (CAMP) and defensin beta-2 (DEFβ2) 
genes contain vitamin D response elements that 
regulate their transcription. Notably, vitamin 
D synthesized in the skin can activate VDR signal-
ing in the gut, enhancing Paneth cell defensin pro-
duction, with defensins acting as key regulators of 
gut microbiota and metabolic health.145 The VDR 
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is expressed by various immune cells within the 
gut, including dendritic cells, macrophages, 
T cells (particularly regulatory T cells), and 
B cells, thus highlighting its role in immune 
regulation.146,147 Vitamin D modulates the func-
tion of regulatory T cells, which are crucial for 
maintaining immune tolerance and controlling 
inflammation.148,149 Additionally, it modulates 
dendritic cells to promote Treg development, reg-
ulates macrophage-mediated inflammation, and 
affects antibody production and immune regula-
tion in B cells. This immune modulation is parti-
cularly relevant in IBD, where vitamin D deficiency 
is common and associated with increased disease 
severity.148,149

Vitamin D also plays an important role in main-
taining mucosal barrier function by upregulating the 
expression of tight junction and adherent junction 
proteins in IEC, as well as suppressing IEC apoptosis. 
Furthermore, fermentation products from the gut 
microbiota, such as the SCFA butyrate, upregulate 
IEC expression of the VDR and suppress inflamma-
tion in a mouse colitis model.150 Together, these 
activities of vitamin D have potential downstream 
consequences for microbial composition change139

The links between vitamin D and gut microbiota 
are intriguing, as vitamin D deficiency has been 
linked to the increasing incidence of several dys-
biosis-associated inflammatory diseases like IBD 
and MS. These conditions are common in northern 
countries where sunlight exposure is limited during 
winter, leading to vitamin D deficiency. For exam-
ple, increasing IBD incidence has been associated 
with low sun exposure and high latitude, with the 
two forms of IBD, namely ulcerative colitis and 
Crohn’s disease being 40% and 80% higher, respec-
tively, in northern Europe as compared to southern 
Europe. Additionally, regions in the United States 
with lower UV exposure exhibit increased inci-
dence and severity of IBD, along with higher hos-
pitalization rates.151 Vitamin D deficiency in IBD 
patients ranges from 16% to 95%, and is seen more 
commonly in CD than in UC patients.152–154

Notably, IBD patients often develop skin lesions 
that mirror the appearance and disappearance of 
their chronic relapsing gut inflammation. There are 
different cutaneous signs of IBD, such as fissures 
and fistulae, erythema nodosum (inflammation of 
subcutaneous fat tissue), pyoderma gangrenosum 

(an ulcerative disorder), pyostomatitis vegetans 
(pustular eruption of the mouth and skin folds), 
oral aphthous ulcers, cutaneous polyarteritis 
nodosa (type of vasculitis affecting medium-sized 
vessels in the skin), necrotizing vasculitis, and 
psoriasis.86 It has been reported that the serum 
vitamin D levels of IBD patients with psoriasis are 
significantly lower than those of patients without 
psoriasis. Moreover, after these patients received 
vitamin D supplementation, they showed clinical 
improvement over that of patients not receiving 
this therapy.155 Since vitamin D has such an impor-
tant role in the immune system, it is not surprising 
that its deficiency has been implicated in several 
skin diseases beyond psoriasis, including AD 
(eczema),156 acne157 and vitiligo, a condition char-
acterized by loss of skin pigmentation.158

Tryptophan metabolites and aryl hydrocarbon 
receptor signaling

Tryptophan is an essential amino acid and 
a precursor for the neurotransmitters kynure-
nines, serotonin, and melatonin.159 It also func-
tions as an important chromophore when 
exposed to UVB light, resulting in the produc-
tion of 6-formylindolo [3,2-b] carbazole 
(FICZ).159 This molecule is a potent activator of 
the AhR and promotes transcriptional regulation 
of a variety of downstream genes, including Il22 
(which encodes IL-22, an innate immune cyto-
kine and a key component of AhR-regulated 
intestinal immunity). The AhR is expressed in 
a variety of tissues, with very high expression 
seen in epithelial barriers and cells of the gut- 
associated immune system.160 Moreover, there 
are other endogenous host tryptophan-derived 
metabolites such as kynurenine, kynurenic acid, 
xanthurenic acid, and cinnabarinic acid, as well 
as a number of bacterial metabolites,161 includ-
ing indole-3-aldehyde (IAld), indole-3-acetic- 
acid (IAA) and indole-3-propionic acid (IPA), 
skatole, and tryptamine, that can act as AhR 
ligands in the context of promoting intestinal 
immunity.162–164 Thus, an array of AhR activat-
ing tryptophan metabolites can be produced by 
the skin in response to UVB light as well as by 
commensal microbes in the gut.
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AhR is an important regulator of the skin barrier 
as it is known to control immune-mediated 
responses in the skin.165 For example, the AhR is 
overexpressed in the epidermal lesions found in 
skin diseases, such as psoriasis, and AD.166 

Moreover, indole-3-lactic acid mediated activation 
of AhR can influence both skin and gut health by 
reducing inflammation and increasing barrier 
function of the skin and gut epithelia.167,168 In 
patients with psoriasis and mouse models of skin 
disease, AhR activation has been shown to amelio-
rate inflammatory sequelae. For example, stimula-
tion of affected skin zones with FICZ induces the 
expression of Cyp1a1, a gene downstream of the 
AhR pathway, and linked to the decreased expres-
sion of several pro-inflammatory chemokines 
involved in the psoriasis transcriptome.169 

Another skin disease regulated by AhR pathway is 
vitiligo, as AhR is involved in melanogenesis 
through the induction of melanogenic genes.170 

Correspondingly, two major therapies for vitiligo; 
psoralen (light-sensitive substance from plants that 
is sensitive to UVA light) and UV phototherapy, 
which promote the re-pigmentation of the skin171 

both activate AhR signaling within the human skin.
Alterations in tryptophan metabolism have also 

been reported in several intestinal conditions such 
as IBD, IBS, and colorectal cancer.172–174 Studies 
using mouse models have determined that inflam-
mation-induced gut microbial dysbiosis often 
involves the loss of tryptophan-metabolizing gut 
microbes such as Lactobacillus reuteri. This loss 
leads to a corresponding decrease in tryptophan 
metabolites, such as IAA, and a reduction in AhR 
activation. These microbiota changes impair acti-
vation of intestinal group 3 innate lymphoid cells 
(ILC3) and reduces their production of the tissue 
protective cytokine IL-22, a key component of 
AhR-regulated intestinal immunity, culminating 
in increased susceptibility to dextran sulfate 
sodium (DSS)-induced colitis.175 Similarly, fecal 
samples from patients with IBD often show 
reduced AhR activity and decreased levels of 
IAA.175 Correspondingly, studies have shown that 
AhR activation decreases cytokine (TNF, IFNγ, IL- 
7, IL-12, IL-17, and IL-6) production in the intes-
tine under inflammatory conditions, while also 
promoting T cell differentiation by controlling 
key transcription factors such as Foxp3 for T regs 

and RORγT for T helper 17 (Th17)/ILC3 cells in 
a ligand-specific manner.176–179 These cells are cru-
cial in promoting intestinal homeostasis as well as 
defending against invading pathogenic microbes, 
respectively.180

Despite the extensive assessments of AhR signal-
ing in the gut or the skin, the potential for AhR 
signaling at one site to simultaneously modulate 
both organs is poorly defined. Memari et al. inves-
tigated the effects of UVB skin exposure on the 
induction of AhR signaling in peripheral tissues 
in vivo. They used a single 1.2 kJ/m2 dose of UVB 
to examine the expression of several AhR target 
genes in the blood, liver, and intestine, at 3 and 
6 hours after UVB exposure. They showed that 
AhR target genes, including Il22 and Il23a (whose 
signaling lies upstream of Il-22) in the intestine, 
were upregulated following UVB exposure on the 
skin. These findings provide compelling evidence 
that moderate cutaneous UVB exposure induces 
endocrine signaling through AhR, a ligand- 
regulated environmental sensor.181 Given the 
emerging role of AhR signaling in the immune 
system in both mice and humans, particularly in 
barrier organs, this data further supports a role for 
cutaneous UVB exposure in mediating endocrine 
regulation of systemic immunity.

Skin wounding

Dermal injuries have been shown to initiate 
a complex interplay between the skin and gut, 
leading to significant disruptions in the intestinal 
microbiome and in immune balance. This phe-
nomenon is particularly evident in mouse models, 
where skin injuries exacerbate gut microbial dys-
biosis and alter immune responses. One mechan-
ism by which skin injury impacts gut health is 
through the systemic circulation of inflammatory 
mediators. For example, Yokoyama et al. demon-
strated that skin disruption induced by indometha-
cin treatment in mice resulted in elevated plasma 
levels of inflammatory mediators such as IgE and 
TNF-α.182 These mediators migrated to the gut, 
where they aggravated intestinal inflammation. 
Additionally, Gallo et al. highlight that localized 
skin injuries can compromise intestinal antimicro-
bial defenses and alter the gut microbiome, increas-
ing susceptibility to DSS-induced colitis.183 Using 
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a hyaluronan (HA) digestion model, they repli-
cated the local release of HA fragments from the 
dermis, a process that occurs during skin wound-
ing or in conditions like psoriasis.184 This model 
controlled for confounding factors commonly 
associated with skin inflammation. The study 
revealed that HA fragments disrupt the gut micro-
biome, resulting in heightened colitis susceptibility. 
Experiments further demonstrated that HA frag-
ments enhanced Reg3 production in the mouse 
colon as well as in cultured human colonic epithe-
lial cells, linking dermal inflammation to gut 
dysfunction.183

These findings demonstrate the close relation-
ship between the skin and gut. Dermal injuries can 
disrupt the delicate balance of the intestinal micro-
biome and immune homeostasis, highlighting the 
need for further exploration into therapeutic stra-
tegies targeting this interplay when it becomes 
maladaptive.

Ultraviolet radiation – local and systemic effects

Building on the insights from the previous section, 
we know that UVB light/radiation can significantly 
affect both the skin and gut. UVB stimulates the 
production of vitamin D in the skin, which, among 
its many roles, helps sustain a healthy gut micro-
biome, as deficiencies have been linked to micro-
bial dysbiosis and IBD.154 Moreover, UVB 
exposure influences the tryptophan pathway by 
promoting the synthesis of AhR ligands, which 
play a vital role in the GSA. In this section we will 
focus on the multifaceted impact of UVB radiation 
(largely from the sun) on both skin and gut health.

Sunlight is defined as a continuous spectrum of 
electromagnetic radiation divided into different 
wavelength ranges: Ultraviolet (UV), visible, and 
infrared. Specifically, the UV spectrum (200–400  
nm) can be further subdivided into three wave-
length ranges: UVC (200–290 nm), UVB (290–-
320 nm), and UVA (320–400 nm).185 Only UVA 
and UVB can penetrate the skin since UVC is 
absorbed by the atmosphere’s ozone layer.186 UV 
radiation can yield both beneficial and adverse 
effects on human health. Sunburns, immune sup-
pression, cataracts, photo-aging and DNA damage 
that can lead to non-melanoma and melanoma 
skin cancers are some of the examples of unwanted 

UV effects. Among the positive aspects, a widely 
recognized outcome of UV radiation is the synth-
esis of vitamin D upon skin exposure.187 Moreover, 
specific skin pathologies such as vitiligo have been 
treated with phototherapy (sunlight) since 2000 B. 
C. in Egypt, Greece, and India. Starting in the 20th 
century, the UVA spectrum of light began to be 
frequently utilized in the treatment of morphea and 
eczema, while UVB is currently applied to address 
conditions such as psoriasis, vitiligo, and mycosis 
fungoides (the most common type of cutaneous 
T cell lymphoma).185,188–190

UV radiation as skin therapy

The effects of phototherapy depend on the depth of 
the light penetration into the skin. UVB light is 
typically absorbed in the epidermis and upper der-
mis, whereas UVA, due to its longer wavelengths, 
effectively penetrates the dermis and it can vasodi-
late arterial vasculature and lowers blood 
pressure.191–193 When UV light penetrates the 
skin, it interacts with molecules called chromo-
phores, which absorb the light and undergo che-
mical reactions. UVB primarily targets nuclear 
DNA as its main chromophore,194 rapidly leading 
to the formation of DNA photoproducts as well as 
DNA damage, and the apoptosis of keratinocytes, 
immune cells, fibroblasts, and endothelial cells 
residing within the various layers of the skin.194 

Delayed effects on skin health include the release 
of anti-inflammatory prostaglandins and cyto-
kines. The overall outcome of UV light involves 
both localized and systemic immune suppression, 
changes in cytokine expression, and cell-cycle 
arrest, all contributing to the suppression of disease 
activity.

Studies have shown that certain wavelengths 
of UV light administered at specific doses can 
exhibit immunosuppressive effects. For example, 
treatment with the longer, non-erythemic and 
deepest penetrating wavelengths of UVA light, 
specifically the subclassification UVA1 (340–-
400 nm) can improve the symptoms suffered by 
patients with systemic lupus erythematosus 
(SLE). This benefit was attributed to UVA1 
light reaching the deep dermal – epidermal junc-
tion, where it reduced systemic B cell and T cell 
activity, causing a decrease in the numbers of 
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IFNγ-producing Th1 cells and cytotoxic 
T cells.195,196 In the case of psoriasis, UV radia-
tion can exert divergent effects, either exacerbat-
ing or improving disease symptoms.190 Although 
excessive sun exposure can worsen existing psor-
iasis plaques, treatments such as narrow-band 
UVB and UVA combined with a plant substance 
called psoralen that increases skin photosensiti-
zation, have proven effective in treating moder-
ate to severe cases of psoriasis.185 Psoriasis is 
believed to be triggered by elevated levels of 
Th1 and Th17 cell derived cytokines. UV radia-
tion treatment modifies this cytokine profile by 
tilting the balance toward Th2 cell-associated 
cytokines, such as IL-4 and IL-13, thereby redu-
cing the pro-inflammatory response and sup-
pressing the IL-23–IL-17 axis197,198

Filaggrin is an important skin barrier protein, 
with AD often linked to loss of function mutations 
in the filaggrin gene (FLG), and thus AD may be 
caused by impaired epidermal barrier function.156 

Even when normally expressed, filaggrin can be 
degraded by several “natural moisturizing factors” 
in the skin, including trans-urocanic acid (trans- 
UCA), a major UVB photon-absorbing 
chromophore.199 UVB phototherapy is commonly 
used to treat AD since it has been shown to increase 
filaggrin levels in patients after 12 weeks of 
treatment.200 This may reflect that upon absorption 
of UVB radiation, trans-UCA is converted to cis- 
urocanic acid (cis-UCA) which may initiate 
immunosuppression.201 Correspondingly, narrow- 
band UVB treatment in patients with AD has been 
shown to reduce skin-infiltrating lymphocytes, 
dendritic cells (DCs), and eosinophils, along with 
significant suppression of the Th2 and Th22 
immune axes, along with a milder suppression of 
the Th1 axis.202 Clinical improvement is associated 
with a decrease in IL-22 levels,202 as well as the 
suppression of Th2-related cytokines such as IL-5, 
IL-13, and IL-31,203 and a reduction in IgE binding 
cell numbers.204

UV radiation has systemic effects

Localized beneficial effects of UV light on the 
human skin have been extensively studied185; how-
ever, beyond the skin, UV radiation can exert 
diverse systemic effects. Aside from inducing 

vitamin D synthesis, it also promotes immune sys-
tem regulation,205 and metabolic processes such as 
the regulation of insulin levels and hepatic steato-
sis; moreover, it triggers the release of endorphins – 
natural pain-relievers and mood enhancers and 
helps regulate the body’s internal clock (circadian 
rhythm), affecting sleep patterns and hormonal 
release.206 Additionally, some studies suggest that 
UVA exposure may help regulate blood pressure 
through the release of nitric oxide, which can relax 
blood vessels.193 Likewise, there is emerging 
research suggesting that UV radiation might 
impact certain neurological processes, potentially 
affecting mood and cognitive function.207 While 
skin exposure to UV radiation is known to affect 
the resident skin microbiota, an exciting new area 
of research is the potential influence that UV radia-
tion may exert on microbiota members at distant 
sites, such as those in the gut.

Gut and skin microbiota communication: 
modulation by UV radiation

As previously noted, many studies have linked 
a dysbiotic skin microbiota to cutaneous patholo-
gies such as acne, AD, and psoriasis.208 Moreover, 
these conditions are often associated with concur-
rent GI diseases such as IBD, IBS and celiac disease. 
This raises the question of whether the ameliorative 
effects of UV radiation on these diseases may in 
part reflect UV driven-modification of the skin and 
gut microbiota. We suspect that exposure to UV 
radiation, depending on the exposure time and 
intensity, can directly modify skin microbial 
communities.205 One of the major effects of UV 
radiation on microbes is DNA damage. However, 
some bacteria and fungi show a selective tolerance 
to UV radiation at specific stages of their life cycles, 
but are often susceptible during sporulation, diffu-
sion and infection.205 Thus, UV radiation could 
cause the loss of more susceptible microbes.209 

Wang et al. revealed that porphyrins produced by 
Propionibacterium acnes (P. acnes) were decreased 
following UV treatment, providing evidence that 
skin bacteria are sensitive to UV exposure in 
patients with acne.210 AD patients have also been 
shown to carry increased S. aureus burdens on 
their skin, which were reduced after UVB 
treatment.211 In concert with any UV-induced 
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changes in microbial composition, microbial meta-
bolites should also be altered. In this section we 
describe some mediators that may underlie com-
munication between the gut and skin microbiotas 
and their potential to being influenced by UV 
exposure (see Figure 2).

The importance of metabolites from the trypto-
phan pathway to both gut and skin health was pre-
viously addressed, but to what degree the production 
of these metabolites requires the microbiota is 
unclear. Recently, Patra et al. exposed germ-free 
(lacking a microbiota), disinfected mice (partially 
devoid of skin microbiota) and control mice with 

an intact microbiota to UVB radiation (one time 
exposure). Assaying skin biopsies from these mice, 
the authors showed that UVB exposure increased 
tryptophan metabolism, but only in control mice 
that possessed an intact microbiota.212 The authors 
highlight the difficulty in determining whether the 
increase in tryptophan metabolites caused by UV 
radiation was due to production by the microbiota 
or the host skin cells. Nevertheless, these results 
emphasize the importance of the skin microbiota in 
promoting a distinct metabolomics profile.

Another well-known product of gut bacteria are 
SCFA, which are produced through the fermentation 

Figure 2. Effects on UVB on the skin and its potential impacts a) cutaneous exposure to UVB light can lead to the production of vitamin 
D from 7-dehydrocholesterol in the epidermis. Vitamin D also influences gut health by targeting three key components of the GI tract: 
the intestinal epithelial barrier, gut immunity, and gut microbiota. UVB light can cause DNA damage in skin cells and skin bacteria. UVB 
light also converts trans-uca to cis-uca in the skin, which generates ROS, resulting in immunosuppression, DNA mutations, and 
inflammation. Tryptophan acts as a chromophore when exposed to UVB light, leading to the production of 6-formylindolo [3,2-b] 
carbazole (FICZ), a potent activator of the AhR. AhR is involved in detoxication, barrier function, and immunity. b) exposing the skin to 
UVB light may impact distal organs such as the gut. UVB is reported to alter the gut microbiome composition and influence SCFA 
production. SCFA can be transported from the intestine to the skin, where they bind to G protein-coupled receptors (GPCRs) on skin 
cells, directly influencing tissue metabolism and function. In the gut, tryptophan can be metabolized by bacteria, producing AhR 
ligands that activate cells, such as ILC3 to produce IL-22. IL-22 regulates the release of antimicrobial peptides, thereby modulating 
microbial composition and affecting the balance between immunity and the microbiota. BAs, initially produced in the liver as primary 
BAs, can be metabolized in the colon by gut microbiota (e.g., Clostridium and eubacterium) into secondary BAs. BAs play fundamental 
roles in metabolism and immunological processes. Lastly, taurine can be degraded by sulfur-derived bacteria like Bilophila and 
Escherichia. Taurine plays roles in bile acid conjugation, osmoregulation, membrane stabilization, antioxidation, and modulation of 
calcium signaling. Created in Biorender.com
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of indigestible polysaccharides.213 Among the SCFA, 
butyrate is especially critical for gut homeostasis as it 
fuels colonocyte metabolism and acts on immune 
cells to reduce inflammation.214 SCFA have been 
shown to travel from the gut to distant organs and 
tissues via the peripheral circulation.215,216 SCFA bind 
to G protein-coupled receptors (GPCRs) expressed 
by skin cells, leukocytes, neutrophils, and other cell 
types, thereby directly impacting tissue metabolism 
and function.217,218 For example, many patients 
with AD exhibit low levels of fecal SCFAs, in keeping 
with a low abundance of SCFA-producing bacteria,219 

a pattern also seen in animal models.220 Acne, an 
inflammatory skin condition caused by the over-
growth of P. acnes, can be alleviated by the probiotic 
Staphylococcus epidermidis .221,222 This probiotic inhi-
bits P. acnes colonization and its ability to induce 
inflammation by producing SCFAs.223 In terms of 
GI diseases, IBD patients often carry lower levels of 
SCFA in their feces as compared to healthy controls.81 

Human and murine studies indicate that multiple 
exposures to sub-erythemal UV radiation can 
enhance the diversity of the gut microbiota, poten-
tially increasing the presence of SCFA-producing 
bacteria. It remains untested however, whether this 
results in a measurable increase in SCFA levels.17,224 

In a recent study, mice were exposed to UVB radia-
tion (75 mJ/cm2) three times per week for eight weeks 
to analyze the effects on the cecal microbiome. The 
study surprisingly found that UVB irradiation 
reduced bacteria involved in SCFA production such 
as Prevotella, Roseburia, Ruminococcus, and 
Akkermansia .225 These results contradict previous 
studies, but it is important to consider the intensity 
of the UVB light and the frequency of exposure. The 
longer exposure period of eight weeks in this study 
suggests that long-term UVB exposure may have 
a detrimental effect on SCFA-producing bacteria.

Bile acids (BAs) are crucial metabolites that 
also impact both the gut and skin and may play 
a role in communication between these two 
organs. Originating from cholesterol, these nat-
ural surfactants are produced in the liver and 
released into the small intestine, where they aid 
in digestion and absorption of fats.71 These 
primary BAs are not fully absorbed in the 
small intestine, so a portion reaches the colon, 

where the gut microbiota metabolizes these 
primary BAs through a process called deconju-
gation and dehydroxylation. This microbial 
conversion transforms primary BAs, such as 
chenodeoxycholic acid (CDCA) and cholic 
acid (CA), into secondary BAs like lithocholic 
acid (LCA) and deoxycholic acid (DCA). In 
this process, bacterial enzymes, specifically bile 
salt hydrolases (BSH), hydrolyze bile salts, 
releasing free bile acids. Subsequently, certain 
gut bacteria, predominantly from the 
Clostridium and Bacteroides genera, catalyze 
the removal of the hydroxyl group at the 7th 

position of the bile acid molecule, leading to 
the formation of secondary bile acids such as 
LCA and DCA.226–228

Beyond their primary functions in lipid digestion 
and cholesterol regulation, BAs play a role in innate 
immune regulation.229 Disruptions in BA balance, 
observed in conditions like psoriatic arthritis and 
IBD, can indicate an imbalance in the gut microbiota 
as well as abnormal immunity, leading to increased 
cytokine production.230,231 The amino acid taurine 
is essential for BA conjugation and has been shown 
to have therapeutic potential in treating UC and 
other diseases,232 for example taurine (0.05–0.15 g/ 
day) effectively addresses psoriasis,233 eczema, and 
prevents irritative dermatitis.234 Studies in mice have 
shown that supplementing with BAs or using engi-
neered bacteria that produce BAs will boost the 
numbers of colonic Tregs and decrease susceptibility 
to colitis.235,235 Patients with psoriasis often display 
dysfunctional BA profiles, with lower levels of con-
jugated primary and secondary BAs.236 Early clinical 
studies have indicated that oral supplements of 
dehydrocholic acid or ursodeoxycholic acid can 
treat psoriasis, likely by influencing gut microbiota 
or by inhibiting cutaneous phospholipase A2 
activity.237,238 Moreover, in vitro studies have 
shown that BAs can directly suppress IL-17A pro-
duction by T cells, suggesting a mechanistic link 
between BAs and their anti-psoriatic effects.239 

Dietary changes and antimicrobial agents may help 
modulate the microbiota-BA axis,240 potentially 
treating various disease of the GI tract as well as 
skin conditions. Since studies have not yet addressed 
whether UVB exposure on the skin can alter BA 
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metabolism, more research is needed to explore the 
potential connection between UV radiation-induced 
microbial shifts and BA metabolism.

Trimethylamine N-oxide (TMAO) is another gut 
microbial metabolite that can affect gut and skin 
health. Derived from dietary sources such as choline, 
betaine, and carnitine, increased levels of TMAO 
have been implicated in the pathogenesis of IBD 
and Hidradenitis suppurativa (HS),241 a highly dis-
abling inflammatory skin disease associated with 
several cardiovascular and metabolic diseases such 
as metabolic syndrome, hypertriglyceridemia, dia-
betes mellitus, ischemic stroke and myocardial 
infarction.242 There is also an association between 
HS and IBD, indicating shared genetic susceptibility 
and immunological features between the two 
conditions,243 but TMAO was not studied as part 
of this association. The relationship between HS and 
IBD is influenced by shared risk factors like smok-
ing, genetics, and common disease features like fis-
tula formation. A study revealed that IBD (CD 
(0.8%) and UC (1.3%)) is significantly more preva-
lent among HS patients than in the general popula-
tion (0.3%), with a higher risk of developing new- 
onset IBD.244 Additionally, a 2018 cohort study 
found that HS patients with IBD were predomi-
nantly younger African American females, more 
likely to be smokers, obese, and diabetic, with longer 
hospital stays and higher healthcare costs.245 This 
connection can be explained through the GSA. Both 
HS and IBD involve immune dysregulation, driven 
by key cytokines such as IL-1β, IL-17, and TNF-α, 
contributing to chronic inflammation in both the 
gut and skin.244,246,247 Disruptions in the gut micro-
biota in IBD may exacerbate systemic inflammation, 
affecting skin conditions like HS. The shared inflam-
matory environment in both diseases also explains 
common features like fistula formation due to the 
chronic, dysregulated immune responses that affect 
both the skin and gut. Targeted treatments, includ-
ing TNF alpha inhibitors, have proven effective in 
both HS and IBD, showing their interconnected 
inflammatory pathways.244,246,247 Thus, acknowled-
ging the GSA in HS patients with GI symptoms may 
warrant further evaluation for IBD, highlighting the 
importance of integrated care for both conditions. 
Interestingly, Vitamin D supplementation has 
shown promise in reducing TMAO levels, suggest-
ing a novel therapeutic approach for both IBD and 

HS.248 Considering this, we suggest that exposure to 
UVB radiation, and its induction of Vitamin 
D should be studied for its potential to lower 
TMAO levels.

UV radiation as a possible therapy for 
conditions linked to the GSA

The GSA has emerged as a significant area of 
research in recent years, attracting growing 
interest for its focus on defining mechanisms 
of communication between organs in the 
human body, as well as its potential for devel-
oping therapies for both skin and gut disorders. 
Researchers have studied several therapies to 
modulate the gut microbiota, such as probiotics 
and prebiotics,249 dietary modifications,250,251 

topical therapies,252 and fecal microbiota trans-
plantation (FMT).253 In contrast, phototherapy 
has been primarily studied in the context of skin 
diseases.185,188–190 UV radiation has been inves-
tigated for its potential therapeutic effects on the 
skin, with studies suggesting that it can impact 
the cutaneous immune system through the 
GSA.205 An exciting concept is that sunlight, 
particularly UVB light, may offer protective 
properties against a range of immune-mediated 
disorders, extending beyond the conventional 
role of vitamin D.254 This discovery has sparked 
new discussions among scientists and reshaped 
our understanding of potential treatment 
approaches.

Phototherapy, a promising intervention, could 
provide benefits far beyond vitamin D regulation. 
Observations of SCFA production by the gut 
microbiome17,225 and activation of targeted AhR 
genes181 in the gut after UVB exposure to the 
skin suggest that this effect may extend to bile 
acids, TMAO, and other metabolites regulated by 
the microbiota. Evidence indicates that exposing 
the skin to UV radiation can promote changes in 
gut microbiota,17,225 although more studies are 
needed to confirm that these changes can yield 
gut health benefits. By further exploring the com-
plex interactions within the GSA, future studies 
can pave the way for personalized and effective 
treatments that leverage the power of the micro-
biota to promote gut-skin health.
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Conclusions

In conclusion, our review highlights the dynamic 
communication in the skin and gut axis. While the 
various organs interact, these two organs are 
uniquely exposed to the environment, and play 
a crucial role in maintaining homeostasis, and bal-
ancing between beneficial and detrimental effects of 
environmental factors. We have shown that the GSA 
involves both microbiota-dependent and indepen-
dent mediators, emphasizing the complexity of this 
communication. By understanding these interac-
tions, we can anticipate advancements in therapeutic 
approaches and precision medicine. Ultimately, 
further research will help to clarify how environ-
mental stimuli such as UV treatment can control 
the complex signaling networks that control human 
health and disease, offering prospects for improved 
patient outcomes and enhanced healthcare 
practices.
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