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Abstract: Colorectal cancer (CRC) continues to be a significant contributor to global morbidity and
mortality. Emerging evidence indicates that disturbances in gut microbial composition, the formation
of reactive oxygen species (ROS), and the resulting inflammation can lead to DNA damage, driving
the pathogenesis and progression of CRC. Notably, bacterial metabolites can either protect against
or contribute to oxidative stress by modulating the activity of antioxidant enzymes and influencing
signaling pathways that govern ROS-induced inflammation. Additionally, microbiota byproducts,
when supplemented through probiotics, can affect tumor microenvironments to enhance treatment
efficacy and selectively mediate the ROS-induced destruction of CRC cells. This review aims to
discuss the mechanisms by which taxonomical shifts in gut microbiota and related metabolites
such as short-chain fatty acids, secondary bile acids, and trimethylamine-N-oxide influence ROS
concentrations to safeguard or promote the onset of inflammation-mediated CRC. Additionally,
we focus on the role of probiotic species in modulating ROS-mediated signaling pathways that
influence both oxidative status and inflammation, such as Nrf2-Keap1, NF-κB, and NLRP3 to mitigate
carcinogenesis. Overall, a deeper understanding of the role of gut microbiota on oxidative stress
may aid in delaying or preventing the onset of CRC and offer new avenues for adjunct, CRC-specific
therapeutic interventions such as cancer immunotherapy.
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1. Introduction

Colorectal cancer (CRC) consistently contributes to global mortality, ranking as the
second leading cause of cancer-related deaths and the third most diagnosed cancer world-
wide [1]. A recent study by GLOBOCAN, the Global Cancer Observatory, which included
data on 36 various cancers from 185 countries, estimates that CRC accounted for 9.6% of
new cancer cases and 9.3% of new cancer deaths in 2022 [2]. GLOBOCAN also projects that
the yearly incidence of CRC will increase from 1.9 million new cases in 2020 to 3.6 million
new cases by 2040, with CRC-related deaths rising from 930,000 to 1.6 million during
the same period [3]. Although the majority of CRC diagnoses occur in individuals over
the age of 70 [4], the incidence of CRC in those under 50 has been rising in recent years,
prompting the American Cancer Society to recommend earlier screening [5]. Due to the
global burden of the disease and its high mortality rate, significant research has been
directed towards understanding the factors driving CRC pathogenesis and improving
preventative measures [6,7]. Currently, the non-modifiable risk factors for CRC devel-
opment include sex, race, genetics, and the presence of inflammatory bowel disease [7],
while the modifiable risk factors include dietary habits, physical inactivity, obesity, and
smoking [6]. Emerging evidence has shown that the composition of intestinal bacteria,
collectively termed the gut microbiota, can influence or protect against CRC pathogenesis
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by acting as a key intermediary of these modifiable risk factors [8–10]. For example, the
introduction of a high-fat diet in animal models has been shown to induce tumorigenesis
through significant shifts in microbial composition, including increasing pathogenic and
inflammatory microbial species such as Alistipes while reducing probiotic bacteria like
Parabacteroides [11]. Cigarette smoking has a similar, unfavorable effect on gut microbiota,
enriching species like Eggerthella lenta and depleting Parabacteroides and Lactobacillus to
activate oncogenic signaling in the colonic epithelium [9]. There are multiple proposed
mechanisms by which these shifts in microbial composition promote CRC development
including, but not limited to, inflammatory signaling [12], direct or indirect DNA damage
through the production of harmful metabolites [13,14], histone modification [15], upregu-
lating oncogenic genes [11], inducing tumor resistance to treatment [16], and promoting
the formation of reactive oxygen species (ROS) [17].

Of particular interest, sustained increases in ROS play a central role in activating
carcinogenic signaling pathways by acting as secondary messengers to induce tumorigene-
sis and cancer progression [18]. Interestingly, microbiota are critical modulators of ROS
and oxygen free radical generation, particularly in states of dysbiosis [19]. As such, it has
been demonstrated that commensal bacterial species can suppress inflammatory signaling
through antioxidant properties, whereas pathogenic bacterial species exert the opposite ef-
fect [20]. Additionally, the gut microbial composition has also been shown to be influenced
by states of increased oxidative stress with colorectal cancer-associated bacteria adapting
their transcriptomes to defend against microenvironment pressures, leading to the perva-
siveness of inflammatory gut microbiota [17]. For example, Escherichia coli from cancerous
microenvironments with increased oxidative stress displayed greater activation of genes
that induce virulence, host colonization, metabolite uptake, and survivability compared
to their non-cancerous counterparts [17]. Given this reciprocal influence between the gut
microbiota and oxygen free radicals, probiotics have emerged as an adjuvant therapeutic
method with antioxidant properties. They can mitigate oxidative stress by augmenting
antioxidant and anti-inflammatory signaling pathways, promoting the production of antiox-
idant microbiota-derived metabolites, and enhancing the activity of antioxidases [21]. To
date, studies have strongly supported the role of probiotic administration in inflammatory
gut conditions [22,23] and accumulating evidence demonstrated their anti-proliferative
and anti-inflammatory efficacy in inflammation-driven CRC [24–28].

In this review, we present emerging evidence demonstrating the mechanisms by
which unfavorable taxonomical shifts in the gut microbiota generate sustained increases
in reactive oxygen species to initiate inflammatory signaling and resulting carcinogenesis.
First, we briefly describe the role of ROS and oxygen free radicals in tumorigenesis as
it pertains to CRC. In the process, we identify key gut microbial species and important
microbiota-derived metabolites that contribute to ROS formation and modulate oxidative
status in CRC models. Lastly, we discuss the role of probiotics in reducing oxidative stress
by enhancing antioxidase concentrations and mitigating ROS-mediated inflammatory
signaling, thereby aiding in the prevention and treatment of inflammation-driven CRC.

2. Reactive Oxygen Species, Oxidative Stress, and Colorectal Cancer (CRC)

Under basal conditions, ROS serve as essential signaling molecules, controlling multi-
ple aspects of cellular physiology including the mediation of growth factors, transcription,
and immunomodulation [29]. Endogenously, the majority of ROS are produced via ox-
idative phosphorylation and the mitochondrial electron transport chain with additional
contributions from pro-oxidative enzymes such as nicotinamide adenine dinucleotide phos-
phate oxidase (NOX), nitric oxide synthase (NOS), xanthine oxidases (XO), cyclooxygenases
(COX), and lipoxygenases [30,31]. Exogenous factors such as air pollution, radiation, diet,
smoking, and drugs also significantly contribute to the total amount of cellular ROS [32].
When in excess, the accumulation of ROS and resulting imbalance between oxygen free
radicals and antioxidants lead to a pathological disruption of normal cellular physiol-
ogy [33,34]. Specifically, oxidative stress is shown to confer cell damage, DNA mutations,
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inflammatory stress, and the dysregulation of growth factors, which in combination can
lead to tumorigenesis [29].

As it pertains to CRC, studies have elucidated potential mechanisms by which tumori-
genesis may occur in direct association with the accumulation of ROS [35,36]. Importantly,
ROS-mediated pathways have been shown to induce DNA damage and the subsequent tu-
morigenic mutations commonly seen in CRC pathology including p53, APC, and BRAF [37].
It is estimated that over 50% of human colorectal tumors are derived from p53 muta-
tions [38], with the oxidation of DNA bases contributing to the mispairing of guanine and
cytosine with adenine and thymine bases [39]. Specifically, the DNA oxidation of guanine
and cytosine bases results in the formation of 8-oxoguanine and 5-hydroxycytosine, re-
spectively, leading to mispairing during DNA replication and high mutation rates [35].
Interestingly, it has been reported that 8-oxoguanine concentrations are higher in the urine
of CRC patients compared to healthy controls, likely due to the enhanced DNA excision
rates of mismatched bases and the subsequent excretion [40].

In addition, lipid peroxidation is also a potent inducer of CRC development [36,41].
Byproducts of lipid peroxidation pathways are among the most significantly elevated in
colitis-associated CRC [36]. For example, the administration of low doses of epoxyke-
tooctadecenoic acid (EKODE) has been found to exacerbate intestinal barrier dysfunc-
tion, lipopolysaccharide, and bacterial translocation along with CRC development via
inflammatory signaling pathways such as NF-κB and c-Jun N-terminal kinases (JNK) [36].
Similar results have been observed with other lipid peroxidation byproducts including
4-hydroxynonenal (4-HNE) and 12,13-epoxyocyadecenoic acid (EpOME), both of which
augmented inflammation and contributed to colorectal tumorigenesis [42,43]. Proteins
are also affected by oxidative stress and confirmational changes in their structure can
contribute to CRC development. Sulfur-containing amino acids (cysteine and methionine)
are easily oxidized, leading to the formation of undegradable protein aggregates, notably of
important enzymes, structural proteins, and receptors [44]. A comparative study identified
31 proteins containing oxidation-sensitive cysteines that are associated with tumorigenesis,
with cysteine oxidation found to be correlated with CRC-associated changes [45]. There-
fore, dysregulated protein degradation systems are a hallmark of CRC, and targeting these
pathways has become of recent interest in cancer treatment [46].

Though the accumulation of ROS is shown to confer carcinogenic changes in colorectal
cancer cells, researchers have harnessed the apoptotic and senescence-inducing capabilities
of ROS as an anti-cancer therapeutic modality [47]. Within their tumor microenvironments,
uncontrolled proliferation in cancer cells increases ATP requirements and concurrently
upregulates oxidative phosphorylation and ROS concentrations. However, intrinsic an-
tioxidant activation is also upregulated in cancer cells, reducing oxidative stress to levels
comparable to non-cancerous counterparts. It is important to note the duality of ROS
generation within cancer cells, as moderate ROS levels may induce cancer survival and
proliferation, while the overload of ROS induces apoptosis and preferential destruction of
tumor cells [48]. Toxic accumulation of ROS leads to endoplasmic reticulum stress, trig-
gering apoptotic pathways, most notably via inositol requiring enzyme-1 (IRE1) signaling
to induce autophagy and senescence [49]. Taken together, these findings highlight the
versatility of ROS and the importance of redox balance in CRC cell physiology.

2.1. Antioxidants, Nrf2-Keap1, and Carcinogenesis

Given the pro-carcinogenic influence of ROS accumulation on CRC pathogenesis,
cellular antioxidant defense mechanisms serve an important role in alleviating oxidative
stress [50]. A recent large-scale study suggests that higher exposure to antioxidants and
corresponding oxidative balance correlates negatively with the onset of CRC [51].

To further defend against oxidative and electrophilic stress, eukaryotic cells utilize the
Nrf2-Keap1 pathway to activate an antioxidant response element (ARE) and related gene
network to promote the production of antioxidant enzymes [52]. In an unstressed oxidative
environment, Kelch-like ECH-associated protein 1 (Keap1) binds to and inhibits nuclear
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factor erythroid2-related factor (Nrf2). Alternatively, states of oxidative stress induce a
conformational change in Keap1, releasing Nrf2, which then translocates to the nucleus
to activate ARE [52]. The activation of ARE initiates the transcription of antioxidant
enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase
(GPx), glutathione-S-transferase (GST), and heme-oxygenase 1 (HO-1), which mitigate
redox imbalance and free radical damage [53] (Figure 1).
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Figure 1. Visualization of the Nrf2-Keap1 pathway and antioxidant enzyme transcription. Un-
der oxidative stress, Nrf2 is phosphorylated and dissociates from Keap1. Phosphorylated Nrf2
then translocates to the nucleus where it binds to small musculoaponeurotic fibrosarcoma (sMAF),
activating the antioxidant response element (ARE). This initiates antioxidant enzyme gene transcrip-
tion including superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase,
and heme-oxygenase 1. Conversely, under physiological conditions, Keap1 targets Nrf2 for pro-
teasomal degradation, and antioxidant enzymatic transcription is not upregulated. Abbrevia-
tions: Nrf2, nuclear factor erythroid 2; Keap1, Kelch-like ECH-associated protein 1; ROS, reactive
oxygen species; p-Nrf2; phosphorylated Nrf2; ARE, antioxidant response element; sMAF, small
musculoaponeurotic fibrosarcoma.

The importance of the Nrf2-keap1 antioxidant pathway in carcinogenesis is demonstrated
through studies with Nrf2 knockout mice which exhibit oxidative toxicity and significant
inflammation compared to controls [54,55]. More specifically, in an Azoxymethane/Dextran
Sulfate Sodium model of colitis-associated CRC, Nrf2 knockout was associated with higher
tumor incidence, indicating a critical role of Nrf2-dependent inflammatory suppression
in mitigating CRC development [54]. Increased inflammatory and oxidative markers in
Nrf2 deficient mice promoted the proliferation of intestinal crypt cells, increasing the risk
and presence of mutations leading to carcinogenesis [54]. Similarly, another study with
Nrf2 deficient mice showed a higher incidence of tumor cells and identified 23 novel
Nrf2-related genes that indicated poorer prognosis in CRC tumor samples [55]. Aging also
dysregulates Nrf2 activity, increasing tumorigenesis via ROS-mediated DNA damage and
mutations [56], which may also play a role in CRC development and higher prevalence in
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older generations. Telomeres, the protective caps of eukaryotic chromosomes, are highly
susceptible to oxidative damage [57], and in combination with Nrf2 dysregulation and
unbalanced redox status, oxidative stress can lead to mutations, genomic instability, and
carcinogenesis [56].

Although the Nrf2 pathway is necessary for mitigating oxidative stress to prevent the
onset of colorectal carcinogenesis, fully malignant cells exhibit an opposite fate in response
to excessive Nrf2 signaling [58]. Specifically, Nrf-2 activity may induce cancer resistance to
chemotherapy and enhance tumor growth by protecting against ROS-mediated cancer cell
destruction [58,59]. A recent study using alpha-hederin as an anti-CRC therapy observed
that lower activation of the Nrf2-Keap1 pathway conferred better treatment outcomes, no-
tably due to its role in modulating tumor microenvironments [60]. Interestingly, the tumor
to normal tissue ratio of Nrf2-Keap1 pathway activation has also been linked to lymphovas-
cular invasion in colorectal cancer [61]. It is hypothesized that oncogenic factors promote
conformational changes in the Nrf2-Keap1 complex to prevent Nrf2 degradation [62,63].
Therefore, colorectal cancer cells induce the aberrant activation of Nrf2 to reduce oxidative
stress within the tumor microenvironment, enhancing their survival [64]. Excess Nrf2
activity worsens chemotherapy resistance and confers poorer prognosis indicating that
Nrf2 inhibitors may play an anti-cancer role in this setting [63].

2.2. Inflammatory Signaling, Oxidative Stress, and Carcinogenesis

Inflammation is a significant risk factor for CRC development as those with inflam-
matory bowel disease (IBD) experience up to a three-fold increased incidence of the con-
dition [65]. IBD is a condition that is characterized by chronic relapsing and remitting
intestinal inflammation, which is believed to result from persistent immune responses
triggered by multiple factors including genetic predisposition and interactions with gut
microbial components [66]. The two primary subtypes of IBD are Crohn’s disease (CD)
and Ulcerative colitis (UC) [66]. CD is known to cause transmural inflammation, affect-
ing the entire gastrointestinal tract, particularly the terminal ileum, and is marked by
skip lesions [67]. In contrast, UC typically begins in the rectum and causes continuous
inflammation that extends proximally, almost exclusively affecting the colon [68]. When
uncontrolled, both subtypes can lead to carcinogenic progression, with UC having a slightly
higher tendency to induce CRC due to localized inflammatory changes to the colon [69].

Recent research has identified oxidative stress-related genetic risk loci associated with
the onset of IBD and its subsequent carcinogenic progression [70]. Genome-wide associated
studies have revealed polymorphisms within the NADPH quinone oxidoreductase (NQO1)
and superoxidase dismutase 2 (SOD2) genes. NQO1 polymorphisms have been linked to
anti-inflammatory therapeutic resistance, while mutations in SOD2 correlate with an earlier
age of onset in UC patients [71]. Additionally, meta-analyses have shown that GST M1
null genotype mutations increase susceptibility to IBD in certain populations [72,73], but
not in others [74]. Another genetic locus linked to both the susceptibility and progression
of UC involves the Nrf2 transcription factor encoded by the nuclear factor erythroid-derived
2-like 2 (Nfe2L2) gene, which can induce inflammation through the uncontrolled production
of ROS [75]. Furthermore, the paraoxonase (PON) genetic loci within chromosome 7 have
been associated with IBD development, with a single amino acid mutation (arginine to
glutamine) at position 192 showing a statistically significant difference in susceptibility to
or protection against the condition [76].

Chronic inflammation in IBD induces carcinogenesis through multiple mechanisms
including intestinal epithelial cell dysplasia via p53 or APC pathways initiated by chro-
mosomal instability, microsatellite instability, and hypermethylation [77]. Oxidative stress
induces pro-inflammatory signaling pathways like nucleotide-binding domain, leucine-
rich containing family 3 (NLRP3), and nuclear factor kappa beta (NF-κB), which constitu-
tively damage the intestinal barrier and indirectly contribute to colorectal carcinogenesis
through increasing susceptibility to dysplastic transformation [78,79]. More specifically,
the influence of oxidase stress on NLRP3 inflammasome activation stems from increased
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mitochondrial NADPH oxidase activity and endoplasmic reticulum stress [80,81]. For
example, in colitis-induced CRC mice, a high-cholesterol diet increased tumorigenesis
through the mitochondrial ROS-mediated upregulation of the NLRP3 inflammasome [82].
Specifically, NLRP3-ASC assembly increased IL-1β concentrations, augmenting chronic
inflammation and inducing dysplasia [82]. Interestingly, mitochondrial ROS directly con-
tributes to NLRP3 relocation to endoplasmic structures, initiating interactions with its
adaptor molecule, ASC, and activating the inflammasome [83]. In turn, the overactivation
of NLRP3 induces colitis through the upregulation of pro-inflammatory cytokines within
intestinal epithelial cells, sustained macrophage activity, and recruitment of effector T
cells [84]. This strongly influences carcinogenesis as CRC tumors are densely surrounded
by macrophages with strong NLRP3 expression which contributes to greater cell migration,
invasion, and metastasis, leading to a poorer prognosis [85].

Understanding the pro-inflammatory and immunoregulatory role of NF-κB is also
crucial in CRC pathogenesis [86]. Oxidative stress modulates NF-κB activity as ROS, no-
tably hydrogen peroxide, and phosphorylates the inhibitor of nuclear factor kappa B (IκB),
leading to NF-κB release and translocation to the nucleus [87]. The subsequent activation
of NF-κB regulates key components of innate and adaptive immune responses including
cytokine transcription and inflammasome activation and is a hallmark of inflammatory
bowel conditions when dysregulated [88]. More specifically, the byproducts of NF-κB
activation encompass a wide range of cellular processes including but not limited to the
induction of pro-inflammatory cytokines such as tumor necrosis factor-α and interleukin-1,
the release of chemokines like CXCL12 and CXCL13, the activation of multiple transcription
factors involved in angiogenesis and inflammation, the alteration of adhesive molecule
expression like cadherins, and the secretion of antimicrobial peptides [89,90]. Interestingly,
the expression of NF-κB is found to be comparatively elevated in patients with colorectal
cancer when compared with IBD, supporting its role in adenoma to carcinoma transfor-
mation [91]. The NF-κB signaling pathway has been associated with oncogenic mutation
notably those in the p53, BRAF, and APC genes, which comprise a large percent of colorectal
cancers [92]. NF-κB signaling is also implicated in cell cycle progression and dysregulation
induces constitutive expression of proliferative genes [93]. Suppressing NF-κB activation
has been shown to induce cell cycle arrest at the G0/G1 stage, reducing colorectal cancer
growth [94]. NF-κB inhibitors also suppress the IL-1-induced proliferation of CRC cells
in inflammatory microenvironments by inhibiting IκB phosphorylation [95]. Therefore,
targeting the NF-κB pathway to elicit anti-inflammatory and anti-proliferative effects on
inflammation-derived CRC development is warranted [96].

Nrf2-mediated pathways may also disrupt NF-κB activation, helping mitigate the
development of inflammation-induced CRC [97]. Specifically, Nrf2 activation in response
to oxidative stresses induces HO-1 activity, responsible for degrading heme, a potent
oxidant, into iron, biliverdin, and carbon dioxide [98]. Concurrently, degradation into
these byproducts, particularly carbon dioxide, negatively influences NF-κB translocation
into the nucleus, resulting in the downregulation of the pathway and inflammatory ef-
fects [99]. Thus, Nrf2-mediated antioxidant signaling plays a crucial role in mitigating the
extent of NF-κB-induced inflammation and related inflammatory damage in the onset of
colorectal carcinogenesis.

3. Gut Microbiota and Colorectal Cancer (CRC)

It is estimated that trillions (1013–1014) of commensal microbes reside within the hu-
man gastrointestinal tract [100]. This collection of intestinal microbes is termed as the gut
microbiota while their total genomic composition is referred to as the gut microbiome [100].
When a healthy or favorable gut microbial composition is maintained, gut microbiota
confers a myriad of beneficial effects on host physiology including immunomodulation,
energy homeostasis, protection from gut bacterial pathogen overgrowth, and reduced gut
intestinal barrier permeability [101–103]. Gut microbial composition is influenced by both
environmental and genetic factors throughout an individual’s lifetime, with diet, antibiotic
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use, mode of delivery during birth, geographical location, age, and family genetics playing
a significant role [104]. Given the multifactorial influence on the compositional makeup of
the gut microbiota, perturbations are common and have been linked to multiple disease
states, including obesity, dyslipidemia, type 2 diabetes mellitus, neuropsychiatric disor-
ders, inflammatory bowel disease, and even cancers [105–108]. Over the last few decades,
significant data have linked states of dysbiosis to CRC, with the identification of specific
taxonomical shifts and trends in microbiota species that may act as biomarkers of CRC
as well as species that are associated with CRC diagnosis and progression [11,109]. These
trends include increased relative abundances of Fusobacterium nucleatum, Porphyromonas
gingivalis, Megamonas funiformis, Bacteroides vulgatus, Bacteroides stercoris, Ruminococcus
gnavus, Dorea longicatena, Escherichia coli, Clostridium, Atopobium parvulum, and Actino-
myces odontolyticus [109–113] with generally decreased abundances of protective species
such as Lacticaseibacillus paracasei, Clostridium butyricum, Streptococcus thermophilus and
Faecalibacterium prausnitzii, Roseburia intestinalis, and Eubacterium rectale [114–117].

Of the listed perturbations in microbial composition, the most supported evidence
exists for Fusobacterium nucleatum [118], which is consistently elevated in the fecal samples
of affected patients with early to late stages of CRC [110]. For example, the introduction
of Fusobacterium nucleatum into mice containing the APC gene mutation accelerated tu-
morigenesis through myeloid cell infiltration and pro-inflammatory signaling in CRC [119].
Mechanistically, Fusobacterium nucleatum has been described to exert tumorigenic effects
through multiple modalities, including altering the gene expression of microRNAs associ-
ated with CRC [120], production of harmful metabolites to disrupt autophagy [121], and
activating inflammatory signaling via the NF-κB pathway [122]. In addition to supporting
tumorigenesis, Fusobacterium nucleatum contributes to tumor metastasis through NF-κB
dependent mechanisms including the upregulation of cancer migration genes, methylation
of mRNA, and inducing macrophage infiltration into tumor cells [123–125]. Similarly, Fu-
sobacterium nucleatum concentration is shown to modulate cancer immunotherapy targeting
immune checkpoint inhibitors, with a direct correlation between the relative abundance of
the bacterium and PD-L1 blockade in mouse models [126]. Recent data have also shown
that the bacterium can induce chemoresistance through inhibition of ferroptosis, pyropto-
sis, and apoptosis [127–129], making the species crucial to our understanding of both the
pathogenesis and augmentation of therapeutic modalities.

In addition to Fusobacterium nucleatum, other microbial species are found to have signif-
icant association with various stages of CRC. For example, studies suggest that Atopobium
parvulum and Actinomyces odontolyticus co-occur and increase in abundance in intramucosal
and multiple polypoid adenomas [110]. Atopobium parvulum, a bacterium with cysteine
desulfarase activity, promotes hydrogen sulfide formation within the gut, which can be
toxic to colonocytes [130]. The elevation of Atopobium parvulum in early-stage CRC and the
related overproduction of hydrogen sulfide also lead to further disruption of the gut micro-
biome and CRC progression in conjunction with other hydrogen sulfide-producing species
such as Fusobacterium nucleatum [121,130]. Additionally, the analysis of culprit species in
CRC pathogenesis has identified multiple species that may serve as potential biomarkers
for CRC development including Fusobacterium nucleatum, Peptostreptococcus anaerobius, Bac-
teroides fragilis, Parvimonas micra, Xanthomonas perforans and Clostridium symbiosum [112,131].
Similarly, Bacteroides massiliensis, Bifidobacterium pseudocatenulatum, Corynebacterium appendi-
cis, and Alistipes onderdonkii have been identified as biomarkers that may help differentiate
non-cancerous tissue from CRC tissue [132]. Furthermore, species such as Porphyromomnas
gingivalis are not only linked to CRC pathogenesis, but also provide insight into patient
prognosis [111,133]. Porphyromomnas gingivalis induces carcinogenesis through activation of
the NLRP3 inflammasome, promoting the development of inflammation-driven CRC [111].
In relation to prognosis, studies show that patients with significantly elevated Porphyro-
momnas gingivalis in fecal samples have decreased cancer-specific survivability [133]. Taken
together, there is strong evidence for the intricate interplay between the gut microbiota and
CRC pathogenesis, treatment, identification, and prognosis.
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3.1. Microbiota, Reactive Oxygen Species, and Colorectal Cancer

As previously described, the presence of ROS and oxidative stress creates a pro-
tumorigenic intestinal environment serving as an important risk factor for CRC develop-
ment [134] through direct oxidative damage to the intestinal epithelium [135]. Microbiota
serve as important modulators of redox status, both positively and negatively depending
on the relative abundances of various species and the intestinal microenvironment [136,137].
The disruption of the intestinal barrier via oxidative damage increases permeability, al-
lowing for the translocation of pathogenic microbiota and metabolites, which may drive
inflammation-associated CRC [138]. Additionally, damage to the intestinal barrier increases
the susceptibility of intestinal stem cells to genotoxic or environmental mutagens which
can contribute to uncontrolled inflammatory bowel states [139].

Certain gut microbiota influence carcinogenesis through their oxidative potential
and redox properties, including Peptostreptococcus anaerobius, Enterococcus faecalis, and
Bacteroides fragilis [140–142]. Peptostreptococcus anaerobius modulates the tumor microenvi-
ronment by increasing ROS levels to induce intestinal dysplasia through pro-inflammatory
pathways [141]. Specifically, cholesterol biosynthesis pathways and cell proliferation are
upregulated in response to Peptostreptococcus anaerobius metabolite binding of Toll-like Re-
ceptor 2 (TLR-2) and Toll-like Receptor 4 (TLR-4), promoting ROS formation [141]. Reactive
oxygen species were identified as an intermediate of these processes, as the introduction
of antioxidants or knockdown of TLR-2 or TLR-4 ameliorates both cell proliferation and
cholesterol biosynthesis [141]. Furthermore, Enterotoxigenic Bacteroides fragilis (ETBF) se-
cretes a zinc-dependent metalloprotease toxin, known as Bacteroides fragilis toxin (BFT),
which is strongly associated with colon epithelial cell proliferation through the induction of
intestinal inflammation [143]. Specifically, BFT binds to receptors on the colonic epithelial
cell, triggering carcinogenesis-associated changes such as the cleavage of E-cadherin, en-
hancing Wingless-related integration site (Wnt) signaling, and the release of pro-inflammatory
cytokines [143]. E-cadherin, in particular, is implicated in CRC and other cancers, as it
serves as an adhesion molecule on epithelial cells, facilitating cell-to-cell interactions. The
loss of its functionality is correlated with the formation of colorectal adenomas [144]. Con-
currently, the collection of changes induced by BFT exacerbates colonic barrier permeability,
induces DNA damage, and enhances the metastatic potential of CRC [143]. In addition,
ETBF drives inflammatory stimuli to induce tumorigenesis through the enzyme spermine
oxidase (SMO) [140]. SMO oxidizes spermine to catabolize polyamines with inflamma-
tory stimuli serving as the primary stimulus in its enzymatic activity [145]. Its oxidative
byproducts are cytotoxic in excess, yielding significant DNA damage and resulting car-
cinogenesis including those of breast, gastric, and colorectal origin [146–148]. In a murine
model, the Bacteroides fragilis toxin upregulate SMO to induce DNA damage via its ROS
byproducts [140]. Further, given its enzymatic association with carcinogenesis, novel SMO
inhibitors have been studied with great efficacy in suppressing cell proliferation and mi-
gration [149]. Similarly, Enterococcus faecalis is thought to be a driver of CRC development
through its oxidative capacity [142]. This bacterium is a well-documented producer of ex-
tracellular superoxide and induces chromosomal instability, such as aneuploidy, tetraploidy,
and cell cycle arrest, in murine colonic epithelial cells [150].

In addition to contributing to the formation of oxidative environments, CRC-associated
species also protect themselves against oxidative stress through intrinsic adaptation mecha-
nisms to improve survivability [17,151]. Fusobacterium nucleatum is an obligate anaerobe
that withstands oxidative stress microenvironments allowing for the sustained survivabil-
ity, attachment, and invasion of target tissues [151]. Until recently, it was known that the
bacterium can cope with excess ROS [152], though the mechanisms by which it can do
so had not been elucidated. A recent study has identified a five-gene locus in Fusobac-
terium nucleatum, encoding methionine sulfoxide reductase (MsrAB), a two-component signal
transduction system known as ModR, and distinct proteins [151]. The significance of this
multigene locus is shown through ModR-directed regulation of MsrAB, conferring resis-
tance to ROS-mediated destruction and increased virulence pertaining to the adherence
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or invasion of the bacterium to CRC epithelial cells [151]. In addition to Fusobacterium
nucleatum, Escherichia coli also adapts to oxidative environments with different regulatory
and resistance responses observed in cancerous and non-cancerous bacteria [17]. This is
demonstrated through the upregulation of the inherent arginine decarboxylase (AdiA)
enzyme of Escherichia coli with oxidative stress induction [17]. AdiA is described as an
important enzyme in withstanding oxidative pressure in bacterial species to enhance sur-
vivability [153]. Taken together, these studies provide strong evidence supporting the
influence of gut microbiota trends on oxidative environments seen in CRC and vice versa.

Antibiotics, Redox Balance, and Colorectal Cancer

Similar to the taxonomical trends observed in CRC pathogenesis, it is important to
briefly discuss the effects of microbiota depletion through antibiotic use and its relationship
with carcinogenesis, particularly in the context of redox imbalance. Notably, findings from
a large cohort study suggest that early-life antibiotic use is significantly associated with
an increased risk for colon cancer development across all ages, particularly in individuals
under the age of 50 [154]. Additionally, a recent meta-analysis of six studies concluded
that individuals with the highest levels of antibiotic exposure had a 10% higher risk of
developing colorectal neoplasia compared to those with the lowest antibiotic exposure [155].
This increased risk is thought to be in part secondary to the antibiotic-mediated selection of
pro-carcinogenic, resistant bacterial species as well as stress-resistant cancerous cells that
lack effective DNA repair mechanisms [156].

In the post-antibiotic period, these resistant bacteria and DNA mutations permeate,
as evidenced by studies showing resistance of Fusobacterium nucleatum and Escherichia coli
subtypes to multiple antibiotic classes [157,158]. In addition to allowing for the overgrowth
of carcinogenesis-associated gut microbial species, studies in rodent models have shown
that antibiotic use can potentiate the effect of unfavorable gut microbiota [159]. For ex-
ample, various antibiotic classes were shown to increase the abundance of heightened
adherent invasive Escherichia coli (AIEC) while also promoting its further expansion in
chronically infected mice [159]. Importantly, inflammation induced by antibiotic use up-
regulates reactive nitrogen species leading to the production of oxidized metabolites that
provide a fitness advantage to these pathogenic bacteria, facilitating their expansion [159].
However, not all antibiotics contribute to carcinogenic changes. For instance, erythromycin,
a macrolide antibiotic with unique anti-inflammatory and antioxidative properties has
demonstrated chemopreventative effects [160]. Studies have shown that erythromycin
suppresses pro-inflammatory signaling by inhibiting NF-κB activation, which in turn re-
duces the expression of downstream targets such as interleukin-6 and COX2 in colorectal
cancer cell lines [160]. Given that COX is an inducer of oxidative stress [161], the significant
decrease in its expression suggests reduced oxidative stress in proximal intestinal polyps,
which were also reduced by up to 70.9% compared to controls [160].

While excessive antibiotic use generally tends to initiate carcinogenic changes, targeted
antibiotic therapy may have therapeutic value once colorectal carcinogenesis has occurred,
particularly when used against pathogenic, CRC-associated microbial species such as Fu-
sobacterium nucleatum, ETBF, and AIEC [162,163]. For example, Metronidazole, an antibiotic
that provides enteric anaerobic coverage, has proven effective against Fusobacterium nuclea-
tum [164]. Studies involving rodent CRC xenografts abundant in Fusobacterium nucleatum
derived from humans showed that Metronidazole treatment reduced Fusobacterium load,
cancer cell proliferation, and overall tumor growth [164]. Additionally, studies in murine
models have demonstrated the efficacy of Cefoxitin, a second-generation cephalosporin,
in eradicating ETBF while reducing colonic adenoma formation and median colon tumor
numbers [165]. Notably, ETBL is associated with the development of interleukin 17A
(IL-17A) dependent, inflammation-induced tumors that require persistent colonization of
this Bacteroides fragilis subtype for tumorigenesis [165]. Cefoxitin was found to effectively
decrease mucosal IL-17A expression in this study [165]. In summary, this subsection under-
scores the importance of antibiotic stewardship as broad-spectrum or prolonged antibiotic
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use can contribute to the overgrowth of pathogenic bacterial species and the subsequent
onset of CRC. At the same time, there is growing evidence that once CRC has developed,
selected antibiotics targeting these CRC-associated bacteria may play a role in treatment
alongside chemotherapeutic agents.

3.2. Microbiota Metabolites, Reactive Oxygen Species, and Colorectal Cancer

Many of the beneficial and pathogenic effects exerted by gut microbiota on can-
cer development, progression, and treatment are mediated by the metabolites they pro-
duce [166]. Just as taxonomical shifts in gut microbiota have been observed in the litera-
ture, their metabolites also display unique and conserved changes in those affected with
CRC [131,167,168]. For example, CRC-associated metabolites include elevated concen-
trations of branched-chain amino acids (BCAAs), secondary bile acids, polyamines, and
Trimethylamine-N-Oxide (TMAO), while short-chain fatty acids (SCFAs) are characteristi-
cally decreased in affected patients [131,169,170]. Of particular interest to this review, there
is substantial evidence linking SCFA, secondary bile acids, and TMAO to pre-cancerous and
cancerous oxidative environments as they pertain to CRC. These microbiota metabolites
will be further discussed in the following subsections.

3.2.1. Short Chain Fatty Acids (SCFAs), Reactive Oxygen Species, and Colorectal Cancer

SCFAs are the catabolic end products of dietary fermentation reactions catalyzed by
gut microbiota-related enzymes providing numerous benefits to the human host. These
include promoting intestinal barrier integrity, energy regulation, anti-inflammatory, and
antioxidant effects [171]. Human enzymes cannot metabolize certain dietary fibers and
resistant starches; therefore, gut microbiota serve a symbiotic benefit in producing these
SCFAs, which consist mostly of acetate, propionate, and butyrate [172]. In states of dysbio-
sis and systemic disease, the concentrations of SCFA are notably altered, often significantly
reduced [173]. This pattern is observed in patients with CRC, with affected patients having
lower serum and fecal SCFA concentrations than unaffected individuals [167,174,175]. A
meta-analysis study showed that lower fecal concentrations of acetate, propionate, and
butyrate are associated with a higher risk of developing CRC [174]. As previously men-
tioned, butyrate-producing genera including Faecalibacterium, Eubacterium, and Roseburia,
are significantly reduced in CRC patients. Interestingly, CRC-associated bacteria, such as
Fusobacterium nucleatum, contribute to this imbalance by outcompeting butyrate-producing
bacteria, thereby decreasing its concentration [175].

The mechanisms through which SCFA contribute to the prevention of carcinogenesis
and tumor progression are multi-fold, including influencing cell cycle regulation, inflamma-
tory signaling, and cancer signaling pathways as well as suppressing tumor proliferation
and metastasis [176]. These metabolic byproducts are known to regulate cancer cell growth
through modulating ROS production [175]. Two proposed mechanisms by which SCFA can
influence oxidative stress include the activation of its G-coupled protein receptor (GPR41
or GPR43) or its histone deacetylase inhibitor (HDACi) activity [177]. At physiologic levels,
butyrate increases the activity of antioxidant enzymes such as glutathione-S-transferase
and superoxide dismutase to mitigate oxidative stress [178,179]. SCFA introduction as well
as other GPR43 agonists exert similar antioxidant effects and reduce ROS formation [179]
(Figure 2). Moreover, GPR43 agonism exerts beneficial effects on inflammatory pathways
by improving oxidative stress [180]. For example, in a sepsis-induced inflammatory murine
model, the upregulation of the GPR43 gene correlated with reduced ROS-mediated mito-
chondrial damage while inhibiting NLRP3 inflammasome activity to reduce inflammation,
an effect not seen in GPR43 knockout mice [180]. Similarly, GPR43-deficient mice have
exacerbated colonic inflammatory responses with elevated pro-inflammatory cytokine con-
centrations such as TNF-α and IL-17, which is refractory to SCFA treatment [181]. Further,
resistant starch diets, rich in SCFA, induced GPR43 mRNA reducing inflammation and de-
creasing tumor multiplicity and colonic adenocarcinoma formation in a rodent model [182].
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Therefore, the SCFA receptor GPR43 plays an important role in reducing oxidative stress
and inflammation that could lead to inflammation-driven CRC.
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Figure 2. Short chain fatty acids (SCFAs) and antioxidant roles against CRC development. SCFA
improves CRC through a reduction in oxidative stress, which enhances antioxidase release and
attenuates inflammation. SCFA binding to its receptor, GPR43, and activates the Nrf2-Keap1 pathway.
Keap1 dissociates from Nrf2, allowing Nrf2 to enter the nucleus and upregulate the transcrip-
tion of antioxidant enzymes. This, in turn, reduces ROS concentrations to attenuate the onset of
inflammation-induced CRC. On the right, butyrate is shown to enhance HDAC inhibitor activity,
which reduces ROS production. Decreased ROS production leads to less activation of the NF-KB
signaling pathway and NLRP3 inflammasome, again lessening the development of inflammation-
induced CRC. Abbreviations: GPR43, G-coupled Receptor 43; Nrf2, nuclear erythroid factor 2; Keap1,
Kelch-like ECH associated protein 1; GST, glutathione-S-transferase; SOD, superoxide dismutase;
GPx, glutathione peroxidase; CAT, catalase; ROS, reactive oxygen species; CRC, colorectal cancer;
HDACi, histone deacetylase inhibitors; NF-κB, nuclear factor kappa beta; NLRP3, NLR family pyrin
domain containing 3.

Histone deacetylase (HDAC) removes acetyl groups on histones, allowing DNA to
wrap more tightly, making them more resistant to gene transcription, activation of sig-
naling pathways, and epigenetic modification [183]. Butyrate, the most potent HDACi of
the three common SCFAs, assists in inhibiting the removal of acetyl groups [184]. This
inherent HDACi capability of SCFA helps suppress the NF-κB signaling pathway [185] and
NLRP3 inflammasome activity [186] to protect the intestinal barrier from inflammatory
DNA damage induced by ROS production (Figure 1). Importantly, butyrate-mediated
histone deacetylation allows for the transcriptional upregulation of antioxidative enzymes
such as glutathione-S-transferases (GST) to inhibit the phosphorylation of extracellular
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signal-regulated kinase (ERK) and mitogen-activation protein kinase (MAPK) signaling in colon
cancer cells [187]. ERK and MAPK overexpression is commonly observed in CRC, as their
dysregulation promotes the uncontrolled proliferation of cells [187]. In support of these
findings, the accumulation of butyrate has been shown to play an anti-proliferative role
by halting cell cycle progression in intestinal epithelial cells, thereby protecting against
colonic neoplasia [188]. Research points to histone modification, specifically histone 3
hyperacetylation, as a key factor in the upregulation of cell cycle proteins such as cyclin D1
and p21 [189,190]. Further, through epigenetic modification via HDACi activity, butyrate
acts on the Nrf2 promoter to exert potent antioxidant effects [191] (Figure 2). Butyrate
administration synergistically promotes Nrf2 accumulation and inhibits histone acetyla-
tion through the induction of the AMPK signaling pathway [191]. As such, antioxidant
enzymes are upregulated to promote redox balance and attenuate oxidative damage to the
intestinal barrier.

However, it should be noted that balanced concentrations of Nrf2 are important, as
elevations may also contribute to CRC progression. Significant upregulation of Nrf2 in
chemo-resistant cancer cells may make adequate treatment difficult [192–194]. Similarly,
colonocytes utilize SCFA as a primary energy source under normal circumstances [195].
With cancer being both a genetic and metabolic disease, cancer cells shift their main
source of energy to glucose rather than butyrate [196]. As such, inefficiently metabolized
butyrate by cancer cells accumulates in the nucleus of cancer-affected cells, functioning as
an HDACi [196]. This phenomenon, known as the Warburg effect, works against cancer
cells; in the setting of high butyrate, therefore, probiotics that enhance SCFA concentrations,
notably butyrate, are beneficial [197]. Further, in CRC cells treated with acetate, propionate,
or butyrate, ROS levels become significantly elevated, contributing to cancer cell death
and anti-cancer activity [198]. For example, sodium butyrate introduction directly into
colorectal cancer cells induced mitochondria-mediated apoptosis and associated ROS
generation [199]. It is shown that the ROS production following direct SCFA treatment
into colorectal cancer cells also occurs through the reprogramming of metabolic profiles
including alterations in macromolecule transport and metabolism, mitochondrial transport,
and respiratory chain complex along with elevated ROS production [198]. This excess ROS
production further contributes to cancer cell death, making butyrate a potential therapeutic
option when directly administered to colorectal cancer cells [200]. Taken together, these
studies demonstrate the importance of redox balance and the multifocal contributions of
SCFA in modulating oxidative stress as preventative and therapeutic measures in CRC.

3.2.2. Secondary Bile Acids, Reactive Oxygen Species, and Colorectal Cancer

Bile acids are produced in the liver, stored by the gallbladder, and eventually excreted
into the upper intestinal tract to facilitate the digestion of lipids and other fat-soluble
molecules [201]. Before excretion, primary bile acids are conjugated with taurine and
glycine to prevent passive reabsorption in the upper small intestine [202]. Most primary
bile acids undergo enterohepatic cycling, where they are reabsorbed in the distal ileum
and returned to the liver via the portal blood system [203]. About 5% of primary bile acids
reach the colon, where gut microbiota-derived enzymes convert them into secondary bile
acids [204]. Bile salt hydrolase (BSH) is a major enzyme in this process liberating glycine
and taurine from primary bile acids. BSH-containing bacterial genera include Clostridium,
Enterococcus, Listeria, Bacteroides, Bifidobacterium, and Lactobacillus [205]. Similarly, certain
gut microbiota have hydroxysteroid dehydrogenase (HSDH) activity which oxidizes hy-
droxy groups in primary bile acids to diversify the bile acid pool [206]. Interestingly,
these reactions, particularly with HSDH, are highly dependent on the redox potential and
oxidative status of the microenvironment [207].

In colon cancer, secondary bile acids are characteristically elevated and have been
associated with pathogenesis and tumor progression through multiple mechanisms, includ-
ing the modulation of oxidative status within the tumor environment [208–211]. Secondary
bile acids primarily consist of lithocholic acid (LCA) and deoxycholic acid (DCA) with LCA
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being the most toxic secondary bile acid in relation to CRC, and DCA a close second [212].
LCA and DCA produce ROS through the activation of membrane-bound NADH/NADPH
oxidases and phospholipase A2 (PLA2) [213,214]. Excess ROS production can activate
cellular signaling pathways, including pro-inflammatory NF-κB, causing sustained in-
flammation and oxidative DNA damage contributing to CRC pathogenesis [209,211,215].
At the same time, bile acid-induced oxidative stress promotes apoptosis through mito-
chondrial disruption, resulting in cytochrome C release into the cytosol and activation of
caspases [211,216]. However, these cytotoxic effects can affect normal and cancerous cells,
with a propensity to have a greater impact on normal cellular physiology. Specifically,
these cytotoxic pathways alter the genetic stability of normal colonic cells, while resistant
mutant cells may proliferate through the activation of multiple cellular signaling pathways
inducing carcinogenesis [213,217]. For example, DCA-mediated ROS production can con-
stitutively activate NF-κB and promote apoptosis resistance in CRC cells [218] (Figure 3).

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 14 of 34 
 

 

 
Figure 3. Secondary bile acids and their oxidative role in development or protection against CRC. 
Lithocholic acid and deoxycholic acid increase oxidative stress through the activation of membrane-
bound NADPH oxidases. In turn, this increases NF-κB inflammatory signaling, thereby worsening 
intestinal tract inflammation. At the same time, ROS production induced from these secondary bile 
acids can damage DNA, induce cytochrome C release, and initiate apoptosis. These mechanisms 
influence CRC development. Conversely, ursodeoxycholic acid is a more favorable secondary bile 
acid that improves microbial composition and decreases ROS production. The stimulation of ERK1/2 
in colon cancer cell lines via UDCA-induced ROS reduction influences cell cycle arrest by prevent-
ing cell cycle progression in colon cancer cell lines. This anti-proliferative effect through modulation 
of oxidative status is beneficial in preventing against progression into CRC. Abbreviations: LCA, 
lithocholic acid; DCA, deoxycholic acid; UDCA, ursodeoxycholic acid; NOX, NADPH oxidase; ROS, 
reactive oxygen species; NF-κB, nuclear factor kappa beta; Cyt C, cytochrome C; CRC, colorectal 
cancer; ERK1/2, extracellular signal-regulated kinase. 

3.3. Trimethylamine-N-Oxide, Oxidative Stress, and Colorectal Cancer 
Trimethylamine (TMA) is a byproduct of gut microbiota metabolism of dietary pre-

cursors including carnitine, choline, and betaine [227]. TMA-producing bacteria include 
those that are elevated in CRC such as Escherichia and are generally not abundant in indi-
viduals with a healthy composition of gut flora [228]. Escherichia, specifically, has intrinsic 
carnitine oxygenase activity, catalyzing the conversion of carnitine to TMA, a reaction de-
pendent on oxygen availability [228,229]. Alternatively, the phylum Firmicutes has cho-
line-TMA lyase and betaine reductase activity which help convert choline and betaine to 
TMA, respectively [228]. Once produced, TMA is oxidized to Trimethylamine-N-Oxide 
(TMAO) in the liver by hepatic flavin monooxygenase [230]. 

Figure 3. Secondary bile acids and their oxidative role in development or protection against CRC.
Lithocholic acid and deoxycholic acid increase oxidative stress through the activation of membrane-
bound NADPH oxidases. In turn, this increases NF-κB inflammatory signaling, thereby worsening
intestinal tract inflammation. At the same time, ROS production induced from these secondary bile
acids can damage DNA, induce cytochrome C release, and initiate apoptosis. These mechanisms
influence CRC development. Conversely, ursodeoxycholic acid is a more favorable secondary bile
acid that improves microbial composition and decreases ROS production. The stimulation of ERK1/2
in colon cancer cell lines via UDCA-induced ROS reduction influences cell cycle arrest by preventing
cell cycle progression in colon cancer cell lines. This anti-proliferative effect through modulation
of oxidative status is beneficial in preventing against progression into CRC. Abbreviations: LCA,
lithocholic acid; DCA, deoxycholic acid; UDCA, ursodeoxycholic acid; NOX, NADPH oxidase; ROS,
reactive oxygen species; NF-κB, nuclear factor kappa beta; Cyt C, cytochrome C; CRC, colorectal
cancer; ERK1/2, extracellular signal-regulated kinase.
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While most microbial-synthesized secondary bile acids are tumorigenic, the microbial
and synthetically produced secondary bile acid, ursodeoxycholic acid (UDCA), may have
anti-cancer properties [219–221]. Interestingly, UDCA introduction can shift the gut mi-
crobial composition towards more favorable bacteria, such as increases in Faecalibacterium
prausnitzii and Akkermansia muciniphila, while decreasing pro-inflammatory Ruminococcus
gnavus [222,223]. Additionally, UDCA competitively displaces toxic bile acid and can
accelerate bile acid enterohepatic circulation [224,225]. Though these favorable effects
are well-documented, UDCA naturally comprises about 5% of the total bile acid pool;
therefore, the effects of DCA and LCA, particularly in pre-cancerous microenvironments
and microbial dysbiosis, may predominate [226]. Further, UDCA inhibits the formation of
colon cancer progenitor cells by modulating the oxidative environment [221]. For example,
UDCA decreased the total colon cancer cell count without increasing apoptosis. More
specifically, UDCA treatment-induced reduction in intracellular ROS to enhance ERK1/2
phosphorylation in colon cancer cell lines [221]. ERK1/2 phosphorylation is correlated
with cell cycle arrest through G1/S and G2/M transition regulation; therefore, UDCA has
anti-proliferative effects through the regulation of cellular oxidative status [221] (Figure 3).
These studies highlight the multifactorial influence of secondary bile acids in tumorigenesis
and anti-cancer properties, with DCA and LCA having generally harmful effects through
ROS production and UCDA having a therapeutic role due to its antioxidant potential.

3.3. Trimethylamine-N-Oxide, Oxidative Stress, and Colorectal Cancer

Trimethylamine (TMA) is a byproduct of gut microbiota metabolism of dietary precur-
sors including carnitine, choline, and betaine [227]. TMA-producing bacteria include those
that are elevated in CRC such as Escherichia and are generally not abundant in individuals
with a healthy composition of gut flora [228]. Escherichia, specifically, has intrinsic carnitine
oxygenase activity, catalyzing the conversion of carnitine to TMA, a reaction dependent
on oxygen availability [228,229]. Alternatively, the phylum Firmicutes has choline-TMA
lyase and betaine reductase activity which help convert choline and betaine to TMA, re-
spectively [228]. Once produced, TMA is oxidized to Trimethylamine-N-Oxide (TMAO) in
the liver by hepatic flavin monooxygenase [230].

TMAO concentrations are elevated in individuals with CRC and have been correlated
with carcinogenesis through mechanisms including oxidative stress-driven inflamma-
tion, leading to DNA damage [231,232]. Studies have shown that elevated TMAO levels
induce oxidative stress, activating the NLRP3 inflammasome pathway to produce pro-
inflammatory cytokines in a dose-dependent manner [232]. Another study also noted
NLRP3 inflammasome activity following increases in TMAO [233]. Interestingly, treat-
ment with N-acetylcysteine, an ROS inhibitor, reversed these TMAO-mediated effects,
further supporting the role of TMAO-induced oxidative stress and related inflamma-
tion [232] (Figure 4). Additionally, a recent meta-analysis of 363 manuscripts confirmed
associations between TMAO and inflammation in humans, demonstrating sustained and
dose-dependent increases in C-reactive protein, an important inflammatory marker [234].

While the influence of TMAO on oxidative stress and inflammation is well-documented,
the exact mechanisms conferring CRC pathogenesis require further elucidation. In colon ep-
ithelial cells, TMAO induces oxidative stress and apoptosis, inducing NLRP3 activity [235].
However, as mentioned throughout this review, sustained levels of ROS and inflammation
are known to confer DNA damage and protein misfolding, leading to carcinogenesis. In
other cancers, such as hepatocellular carcinoma and pancreatic cancer, TMAO induces car-
cinogenesis by upregulating inflammatory signaling pathways and superoxide dismutase
activity, promoting inflammation-induced cancers [231,236]. Thus, targeting TMAO has
been studied as immunotherapy in treating these cancers [237,238]. TMAO may also serve
as a future therapeutic target for inflammation-induced CRC in the context of oxidative
stress, though more research is necessary to confirm these findings.
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Figure 4. Pro-oxidative role of gut etabolite, Trimethylamine-N-Oxide (TMAO) on CRC develop-
ment. TMAO increases ROS production to initiate inflammatory signaling, mediating the activation
of the NLRP3 inflammasome. NLRP3 activity increases pro-inflammatory cytokines, leading to
inflammatory gut pathology leading to the onset of inflammation-induced CRC. The administra-
tion of N-acetylcysteine, an ROS inhibitor, attenuates TMAO-induced oxidative stress and related
inflammation. Abbreviations: ROS, reactive oxygen species; NLRP3, NLRP3, NLR family pyrin
domain containing 3; IL-1, interleukin-1; TNF, tumor necrosis factor; IL-6, Interleukin 6; CRC,
colorectal cancer.

4. Probiotics, Antioxidant Properties, and Colorectal Cancer

While harmful gut microbial species have been documented to induce ROS-mediated
carcinogenesis, beneficial bacteria with probiotic effects can combat colorectal cancer devel-
opment and progression through their antioxidant properties [21,239,240]. In conditions
of bowel inflammation and elevated ROS, probiotics have been shown to reduce ROS
concentrations to non-pathological levels [241]. For example, the daily consumption of a
probiotic mixture containing Lactobacillus acidophilus, Lactobacillus rhamnosus, and Bifidobac-
terium bifidum reduced the mean number of tumors by 40% in an inflammation-induced
rodent model of CRC [242]. The influence of probiotic bacteria on preventing carcino-
genesis through the modulation of oxidative status is multi-faceted. This includes the
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microbiota-dependent activation of antioxidative enzymes, regulation of inflammatory
signaling pathway, and alteration of circulating microbiota-derived metabolites [243–245].
Probiotic microbial genera include first-generation probiotics such as Bifidobacterium, and
Lactobacillus as well as Next-Generation Probiotics (NGPs) like Akkermansia muciniphila,
Faecalibacterium prausnitzii, Bacteroides fragilis, Blautia producta, and Clostridium butyricum.
First-generation probiotics are well described to have anti-cancer and anti-inflammatory
effects related to CRC, partly by regulating oxidative status through oxidative and in-
flammatory pathways, such as Nrf2-keap1 and NF-κB signaling, respectively [246–248].
The antioxidant role of NGPs in relation to CRC is less extensively studied, but these
probiotics have been documented to have beneficial roles in inflammatory bowel states
by exerting antioxidant effects [114,249]. Recent studies have clarified the multifaceted
impact of NGPs in mitigating oxidative stress to prevent CRC carcinogenesis [114]. For
example, Faecalibacterium prausnitzii inhibits NF-κB activation to attenuate the proliferation
of CRC cell lines, likely due to its strong butyrate-producing capacity [114]. Additionally,
treatment with Faecalibacterium prausnitzii reduced lipid peroxidation and oxidative stress in
an azoxymethane-induced CRC rodent model [114]. Azoxymethane is a toxin that induces
CRC by depleting GSH and impairing antioxidant response in colon cells [250]. Aberrant
crypt foci, precursors to colorectal polyps, were also reduced in this study, indicating that
Faecalibacterium may be indicated in CRC prevention.

The following subsections will discuss in detail the mechanisms by which probi-
otics confer positive changes in combatting oxidative stress and how this influences CRC
carcinogenesis and progression, which are also summarized in Table 1. Additionally, pro-
biotics and gut microbiota have also been shown to assist in cancer chemotherapy and
immunotherapy [126,237,238,251].

4.1. Probiotics, Antioxidant Enzymes, and Colorectal Cancer

Probiotics exert beneficial antioxidant effects through the modulation of antioxidant
enzymes, such as superoxide dismutase, catalase, glutathione peroxidase, and glutathione-
S transferase [21]. Generally, lactic acid bacteria are well documented for having intrinsic
oxidative defense enzymes such as NADH oxidase and pyruvate oxidase, which help
to maintain redox balance [244,252,253]. For example, a recent study demonstrated that
introducing Lactobacillus bulgaricus into an animal model increased levels of superoxide
dismutase, catalase, and glutathione peroxidase, thereby mitigating oxidative stress [254].

Importantly, the positive antioxidant enzymatic changes in probiotics are shown to
play a protective role in the onset of CRC-specific tumorigenesis [27,255,256]. Interestingly,
the oral administration of Lactococcus lactis, a catalase-producing bacterium, prevented
1,2 dimethylhydrazine (DMH)-induced colon cancer [255] (Table 1). This was evidenced
by increased catalase activity which led to significantly less ROS-mediated, inflammatory
colonic damage and tumor appearance compared to a non-catalase-producing bacterium
counterpart in murine models [255]. Further support for these findings comes from studies
involving Lactobacillus plantarum administered in vitro to DMH-induced colon cancer cells,
which similarly increased antioxidant enzyme activity, including SOD, CAT, and GST.
This led to a reduction in mean tumor volume and total number of tumors [27]. DMH
is a procarcinogen that induces colorectal cancer through a series of metabolic reactions
producing ROS that alkylate DNA and induce carcinogenesis [257]. Further, a more
recent study found that exopolysaccharides (EPS) derived from the probiotic Lactobacillus
acidophilus increase the antioxidant enzymes (SOD, CAT, and GPx) concentrations in DMH-
induced colon cancer model [256]. EPS-producing bacteria, particularly the Lactobacillus
delbruecki strain, also reduced lipid peroxidation via increased antioxidant enzyme activity
(GSH, SOD, CAT, and GPx), thereby ameliorating inflammatory mucosal damage [258].
EPS from Lactobacillus and Bifidobacterium have gained attention for their potent anti-
inflammatory and antioxidant properties including their inherent antioxidant enzyme
capabilities [259,260].
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Table 1. Effects of probiotics on antioxidant enzymes, antioxidant regulatory pathways, ROS-
mediated inflammatory signaling pathways in CRC pathogenesis, and augmentation of current
Immunotherapy. Abbreviations: ROS, reactive oxygen species; DMH, 1,2 dimethylhydrazine; SOD,
superoxide dismutase; CAT, catalase; GST, glutathione-S-transferase; GPx, glutathione peroxidase;
EPS, exopolysaccharides; Nrf2, nuclear factor erythroid related factor 2; Keap1, Kelch-like ECH-
associated protein 1; NF-κB, nuclear factor kappa beta; DSS, Dextran Sulfate Sodium; CRC, colorectal
cancer; IL, interleukin; CRISPR, clustered regularly interspaced short palindromic repeats; NLRP3;
nucleotide-binding domain leucin rich containing family pyrin domain containing 3; PD-1, pro-
grammed cell death protein 1.

Probiotic Results/Implications Reference

Antioxidant Enzymes

Lactococcus lactis
Increased catalase activity resulting in significantly

decreased ROS-mediated inflammatory damage and
tumor appearance

[255]

Lactobacillus plantarum
Administration into DMH-induced colon cancer cells,

increased antioxidant enzymes (SOD, CAT, and GST) to
reduce mean tumor volume and size

[27]

Lactobacillus acidophilus
Produced metabolic derivative, EPS, which increased

antioxidant enzymes (SOD, CAT, and GPx) to mitigate
DMH-induced colon cancer

[256]

Lactobacillus delbruecki

EPS reduced lipid peroxidation with concurrent
increases in antioxidant enzyme activity

(SOD, CAT, GPx, and GSH)
Ameliorated Inflammatory damage to colonic epithelium

[258]

Nrf2-Keap1

Lactobacillus casei

Reduces oxidative and inflammatory stress in
enterocytes by activating the Nrf2-Keap1

and NF-KB pathways
Nrf2 activation reduced ROS accumulation through the

upregulation of GPx

[248]

Bifidobacterium bifidum,
Lactobacillus gasseri

Activating effects on Nrf2 in combination with vitamin
D3 to increase GST and inhibit the onset of

colorectal carcinogenesis
[261]

NF-κB

Faecalibacterium prausnatzii
Inhibited NF-κB activation to attenuate the proliferation

of CRC cell lines
Reduced lipid peroxidation and oxidative stress

[114]

Lactobacillus fermentum
Attenuated NF-κB signaling in DSS-induced

colorectal cancer
Decreased pro-oxidant cyclo-oxygenase 2

[262]

Lactiplantibacillus
plantarum-12

EPS production alleviated inflammation through
inhibition of NF-κB signaling pathway

Related reduction in pro-inflammatory cytokines to
inhibit inflammation-induced CRC development

[263]

Clostridium butyricum

Decreases the phosphorylation of NF-κB to decrease
cytokine activation, ultimately reducing tumor

incidence and size in a colitis-induced CRC model
Improves microbial composition in the same CRC model

[264]

Bifidobacterium longum Diminished NF-κB induction in CRC cells to attenuate
development of aberrant crypt foci [265]

VSL#3

Lactobacillus acidophilus,
Lactobacillus plantarum,

Lactobacillus casei,
Lactobacillus bulgaricus,

Bifidobacterium breve,
Bifidobacterium longum,
Bifidobacterium infantis,

Streptococcus thermophilus

Reduced the expression of pro-oxidant enzymes such as
cyclo-oxygenase 2 in DSS-induced mice

Attenuate IL-6, IL-1β and increased concentrations of
regulatory IL-10

[266]

Attenuated ROS concentrations to reduce
pro-inflammatory chemokines and colitis symptoms

Reduced barrier permeability
[267]

Promotes butyrate production, which is found to
increase the expression of antioxidants in

colitis-associated CRC models
[268]
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Table 1. Cont.

Probiotic Results/Implications Reference

Immuno-therapy Augmentation

Lactobacillus rhamnosus GG

Incorporated as part of a probiotic-CRISPR cancer
immunotherapy system that can penetrate hypoxic

tumor environments
Allowed CRISPR system to reach tumor

microenvironment to enhance ROS release and promote
cell death

[269]

Lactobacillus reuteri

Metabolite, reuterin, alters tumor microenvironment
oxidative status

Selectively enhances ROS expression within colorectal
cancer cells to suppress tumor growth

[244]

Enterococcus faecalis

Reduced NLRP3 inflammasome activity through
attenuation of phagocytosis, which is necessary

for activation
Prevented the onset of CRC development

[270]

Enterococcus durans

Nanoparticle treatment of probiotic cultures increased
folate concentrations

ROS-producing capabilities of the treated probiotic
decreased CRC viability by 19%

[271]

Roseburia intestinalis
Induction of CD8+ T-cell mediated cytotoxicity through

metabolite, butyrate
Augmented PD-1 therapy against CRC

[251]

Radiotherapy Augmentation Roseburia intestinalis

Sensitized inflammation-induced CRC cells to
radiotherapy treatment through butyrate production
Butyrate facilitated autophagy in irradiated cells to

induce cell death

[272]

4.2. Probiotics, Antioxidant Signaling Pathways, and Colorectal Cancer

As discussed throughout this review, the Nrf-2 antioxidant pathway plays a crucial
role in regulating oxidative stress by modulating a broad spectrum of antioxidant enzymes,
contributing to the detoxification and elimination of oxygen free radicals [248]. The gut
microbiota and their metabolites significantly influence the maintenance of intestinal barrier
integrity, partly through the Nrf2-dependent upregulation of epithelial tight junction
proteins [273]. Similarly, natural products that improve inflammatory disease and colitis-
associated CRC are shown to inhibit inflammatory responses, oxidative stress, and mucosal
injury by enhancing gut microbial composition and signaling via the Nrf2/HO-1 pathway.

The probiotic-mediated activation of Nrf-2 is shown to mediate significant antioxi-
dant and anti-inflammatory effects, thus suppressing the onset of inflammation-induced
CRC [248,274]. For example, a recent comparative study on the antioxidant and anti-
inflammatory efficacy of probiotic administration in colitis-induced mice showed the
down-regulation of Nrf2 and NF-κB related genes and alleviated colitis [274]. Interestingly,
the probiotic, containing 88 strains of Lactobacillus and Bifidobacterium spp., improved antiox-
idant enzymatic activity (SOD, CAT, GPX, and GSH), while reducing the concentrations of
pro-inflammatory cytokines such as TNF-α [274]. Lactobacillus casei, a lactic acid-producing
bacterium, has demonstrated a redox role against oxidative and inflammatory stress in
enterocytes through activation of both Nrf-2 and NF-κB signaling [248]. In this study, Nrf2
activation by Lactobacillus casei reduced ROS accumulation in enterocytes by upregulating
glutathione peroxidase [248]. Similarly, Bifidobacterium bifidum and Lactobacillus gasseri
supplementation in conjunction with vitamin D3 also activated Nrf2, with concomitant
increases in GST to inhibit the onset of colorectal carcinogenesis in a rodent model [261].
Overall, Lactobacillus spp. and their metabolites are well documented to confer potent
antioxidant effects through activation of Nrf2 mediated pathways throughout the body,
providing further insight into the role of these bacteria in redox balance and treatment of
inflammatory disease [275–277]. These findings suggest that probiotic supplementation can
reduce ROS-mediated damage and inflammatory stress to enterocytes helping delay or pre-
vent the onset of CRC [248,261]. However, it is important to note that the effects of probiotics
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on Nrf2-keap1 activity in malignant cells are not well studied and the highlighted studies
mainly focus on the preventative effects of probiotics on inflammation-induced CRC.

4.3. Probiotics, ROS-Mediated Inflammatory Signaling Pathways, and Colorectal Cancer

Probiotics have significant positive implications in preventing inflammation-induced
CRC through mediating ROS-mediated, inflammatory, and cancer-related signaling path-
ways such as NF-κB [278]. Enhanced oxidative stress can initiate constitutive signaling
through the NF-κB pathway, promoting inflammatory damage and related carcinogenesis
in the colon [86,279]. Lactic acid bacteria are implicated in mitigating the NF-κB signaling
pathway and protecting against carcinogenesis [262,263]. For example, Lactobacillus fermen-
tum supplementation in Dextran Sulfate Sodium (DSS)-induced colorectal cancer rodent
models attenuated NF-κB signaling pathway signaling by decreasing key proteins IκBα
and p65 and target protein cyclooxygenase-2, a known pro-oxidant [262]. DSS induces
CRC by causing colonic epithelial inflammatory damage [280], suggesting that probiotics
can mitigate inflammatory signaling pathways to delay carcinogenesis [262]. Similarly, Lac-
tiplantibacillus plantarum-12-derived EPS significantly alleviated inflammation by inhibiting
the NF-κB signaling pathway and reducing pro-inflammatory cytokines in a murine model
of inflammation-induced colon cancer [263]. This bacterium also enhances gut microbial
composition by promoting the survival of beneficial gut microbiota and reducing the rel-
ative contributions of inflammatory species [263]. Additionally, the butyrate-producing
Clostridium butyricum decreases the phosphorylation of NF-κB and improves microbial
composition in a colitis-associated colon cancer rodent model [264]. Inhibition of NF-κB
signaling was a catalyst for the observed decreased cytokine activity, increased apoptosis,
and reduced tumor incidence and size. Similarly, Bifidobacterium longum reduced NF-κB
signaling in CRC cells while attenuating the development of aberrant crypt foci in this
murine model [265]. Taken together, these studies provide strong evidence linking the
NF-κB pathway, a byproduct of increased oxidative stress, to CRC pathogenesis, with
probiotics serving as an efficient therapeutic intervention to attenuate signaling.

Further, VSL#3, a probiotic mixture consisting of microbial species from three bacterial
genera (Lactobacillus, Bifidobacterium, and Streptococcus) mitigates inflammation-induced
colorectal adenocarcinoma development through the modulation of ROS and inflammatory
markers [266,267,281]. Specifically, colonic inflammation scores and incidence of colonic
dysplastic lesions were significantly reduced following administration, with concurrent
reductions in IL-6, IL-1β, and increased concentrations of regulatory IL-10 [266]. Similarly,
the expression of pro-oxidative enzymes such as cyclooxygenase-2 was reduced in these
DSS-induced mice, corresponding with decreased ROS activity [266]. Follow-up studies
also supported the anti-inflammatory role of VSL#3 through observed suppression of IL-
6/STAT3 promoting preventative effects on CRC development [281]. The anti-inflammatory
effect of this probiotic mixture is elucidated through its influence on enhancing intestinal
barrier function in MUC2-deficient mice [267]. MUC2 serves multiple important roles in
maintaining intestinal barrier integrity, with the glycoprotein serving as a protective mucin
layer and an important food source for beneficial bacteria [282]. In MUC2-deficient mice,
VSL#3 alone reduced barrier permeability, while attenuating pro-inflammatory chemokines
and colitis symptoms, partly through the attenuation of ROS [267]. Interestingly, these
effects were mediated by the gut metabolite, acetate. However, butyrate production
from the introduction of VSL#3 has also demonstrated increased expression of antioxidant
enzymes in a colitis-associated CRC model [268]. Taken together, VSL#3 and other probiotic
formulations play integral roles in inflammatory pathways, often involving mediation of
oxidative stress and ROS, to mitigate the progression or development of inflammation-
induced CRC.

4.4. Probiotics, Antioxidants and Colorectal Cancer Immunotherapy, and Treatment

There is compelling evidence showing that probiotics protect against CRC pathogen-
esis and progression, in part, by modulating oxidative stress and related inflammatory
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processes. In recent years, it has been shown that probiotics can influence oxidative
microenvironments to enhance cancer immunotherapy in the treatment of colorectal can-
cer [269,283]. For example, in antibiotic-treated rodent models, cancer immunotherapy via
CpG oligonucleotide treatment diminished both cytokine production and ROS-mediated
cytotoxicity in cancer-specific cells, indicating poorer therapeutic responses [283]. Fur-
ther, recent studies have elucidated a probiotic-CRISPR cancer immunotherapy system
consisting of Lactobacillus rhamnosus GG. This Lactobacillus spp. acts as a vector that can
penetrate hypoxic tumor environments allowing CRISPR-derived cancer immunotherapy
to reach the tumor microenvironment, enhance ROS release, and induce cell death [269].
Additionally, Lactobacillus reuteri, a commonly used probiotic, has been shown to reduce the
survivability and proliferation of CRC cells by alternating the oxidative status of the tumor
microenvironment [244]. Interestingly, its metabolite, reuterin, mediates these positive
effects through protein oxidation, selectively enhancing ROS expression within tumor cells
to suppress cancer growth [244]. The observed dose-dependent effects of reuterin were
observed in colon cancer cells, but not in reuterin-resistant counterpart cells.

Enterococcus spp. have also emerged as probiotics with anti-neoplastic properties [270].
While Enterococcus faecalis was previously implicated in pro-carcinogenic effects due to
colonic epithelial DNA damage via extracellular superoxide and hydrogen peroxide pro-
duction [284], recent studies have shown the opposite. Heat-killed Enterococcus faecalis
treatment has been shown to mitigate intestinal inflammation and prevent inflammation-
induced CRC [270], by reducing NLRP3 inflammasome activity. This effect was not ob-
served in NLRP3 knockout mice [270], highlighting the importance of the inflammasome
in the efficacy of Enterococcus faecalis on CRC treatment. Further, a recent study aimed
to harness the ROS-producing capabilities to selectively destroy colorectal cancer cells
through nanoparticle therapy [271]. Nanoparticle treatment of Enterococcus durans cultures
increased extracellular folate concentrations, interacting with metabolic pathways involv-
ing amino acids, SCFAs, and energy metabolites [271]. The subsequent introduction of this
nanoparticle-treated Enterococcus durans cell line into HCT 116 colorectal cancer cell lines
decreased cell viability by 19%, indicating a novel anti-neoplastic role of the bacterium.

In the inflammation-induced CRC model, recent findings have shown that Roseburia
intestinalis enhances immunotherapy, specifically anti-PD-1 therapy in CRC via butyrate
production [251]. CRC patients exhibited significantly reduced Roseburia concentrations,
while supplementation induced CD8+ T-cell mediated cytotoxicity through butyrate bind-
ing to Toll-like receptor 5 and activation of NF-κB signaling [251]. Similarly, Roseburia
intestinalis has also been shown to sensitize inflammation-induced CRC to radiotherapy
treatment, again through the production of butyrate [272]. In this rodent model, butyrate
facilitated autophagy in irradiated cells, inducing cell death [272]. These findings sug-
gest that Roseburia intestinalis may play an important role in augmenting immunotherapy
through the modulation of oxidative and related immunological factors.

5. Conclusions and Perspectives

There is substantial evidence linking the gut microbiota to oxidative status in CRC
models. The intricate interplay between microbiota metabolites, ROS production, and
tumorigenesis provides valuable insight into colorectal carcinogenesis. ROS play a dual
role in CRC, acting as signaling molecules under normal conditions but contributing to
tumorigenesis when in excess. ROS can induce DNA damage, lipid peroxidation, and
protein modifications, leading to mutations and carcinogenesis. Oxidative stress also pro-
motes inflammatory signaling pathways, such as NF-κB and NLRP3, further contributing
to CRC development. The gut microbiota significantly impacts oxidative status and CRC
pathogenesis. Certain bacterial species, such as Fusobacterium nucleatum and Escherichia coli,
can enhance ROS production and inflammatory signaling, promoting tumor growth and
metastasis. Conversely, beneficial bacteria like Faecalibacterium prausnitzii and Lactobacillus
spp. exhibit antioxidant properties, mitigating ROS-mediated damage and reducing inflam-
mation. Probiotics have shown promise in preventing and treating inflammation-induced
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CRC. They can modulate oxidative stress, enhance antioxidant enzyme activity, and influ-
ence inflammatory pathways. Specific probiotics, such as Lactobacillus and Bifidobacterium,
have demonstrated efficacy in reducing tumor incidence, enhancing immune responses,
and improving the efficacy of cancer immunotherapy. The findings reviewed underscore
the complex interplay between gut microbiota, ROS, and CRC. Future research should
focus on (i) elucidating the precise mechanisms by which specific gut bacteria influence
ROS production and inflammatory pathways; (ii) investigating the role of probiotics in
different stages of CRC and their potential in combination therapies with the existing
treatments; (iii) exploring the impact of diet and lifestyle modifications on gut microbiota
composition and CRC risk; (iv) developing targeted probiotic therapies to enhance the
antioxidant and anti-inflammatory responses in CRC patients. Incorporating probiotics
and other microbiota-targeted therapies into clinical practice could offer a novel approach
to CRC prevention and treatment, potentially improving patient outcomes and reducing
the global burden of this disease.
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