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� Owing to high O2 consumption, brain
is highly vulnerable to oxidative
stress.

� Gut-brain axis act as a vital pathway
of communication and physiological
regulation.

� Altered gut microbiota-mediated
oxidative stress is associated with
neurodegeneration.

� Healthy gut microbiota has an
immense antioxidative and anti-
inflammatory role.

� Antioxidative prebiotics and
probiotics attenuates
neurodegenerative symptoms.

� Current databases and in silico tools
will help to develop new therapeutic
regimens.
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Background: Recent research on the implications of gut microbiota on brain functions has helped to
gather important information on the relationship between them. Pathogenesis of neurological disorders
is found to be associated with dysregulation of gut-brain axis. Some gut bacteria metabolites are found to
be directly associated with the increase in reactive oxygen species levels, one of the most important risk
factors of neurodegeneration. Besides their morbid association, gut bacteria metabolites are also found to
play a significant role in reducing the onset of these life-threatening brain disorders.
Aim of Review: Studies done in the recent past raises two most important link between gut microbiota
and the brain: ‘‘gut microbiota-oxidative stress-neurodegeneration” and gut microbiota-antioxidant-neu
roprotection. This review aims to gives a deep insight to our readers, of the collective studies done, focus-
ing on the gut microbiota mediated oxidative stress involved in neurodegeneration along with a focus on
those studies showing the involvement of gut microbiota and their metabolites in neuroprotection.
Key Scientific Concepts of Review: This review is focused on three main key concepts. Firstly, the mounting
evidences from clinical and preclinical arenas shows the influence of gut microbiota mediated oxidative
iversity,
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stress resulting in dysfunctional neurological processes. Therefore, we describe the potential role of gut
microbiota influencing the vulnerability of brain to oxidative stress, and a budding causative in
Alzheimer’s and Parkinson’s disease. Secondly, contributing roles of gut microbiota has been observed
in attenuating oxidative stress and inflammation via its own metabolites or by producing secondary
metabolites and, also modulation in gut microbiota population with antioxidative and anti-
inflammatory probiotics have shown promising neuro resilience. Thirdly, high throughput in silico tools
and databases also gives a correlation of gut microbiome, their metabolites and brain health, thus provid-
ing fascinating perspective and promising new avenues for therapeutic options.
� 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Enteric nervous system (ENS), also known as the second brain of
the body acts as a key link in understanding the bidirectional com-
munication between the gastrointestinal (GI) tract and the central
nervous system (CNS) [1]. Enteric neurons communicate with the
CNS via neuronal (vagus nerve), endocrine, and immune pathways,
which are involved in maintaining gut health [2]. However, the
modulating factor which can regulate this communication is gut
microbiota. Among the gut microbial population (fungi, archaea,
virus, bacteria and parasites), particularly gut bacteria constitute
equal number to that of human cells in the body [3] and interest-
ingly possess a metabolic potential equivalent to that of human
liver [4]. Continuous research in this area shows the immense
importance of gut microbiota not only in the functioning of the
immune system [5] and regulatory metabolism [6] but even in
the development of various organs [7]. Variable environmental fac-
tors such as diet [8], drugs [9] and host factors including age and
genetics [10] not only alter the composition of gut microbiota
but also can cause the change in signaling activity of them. Also,
Immunoglobulin A (IgA), which is the most abundant antibody
secreted at mucosal surface, coats the commensal bacteria in the
gut and maintains diverse and stable gut microbiota community
[11,12]. Even, gut microbiota is known to influence the serum pro-
tein zonulin, which is required to regulate intestinal and vascular
endothelium (blood-brain barrier) tight junctions [13]. Changes
in gut microbiota directly affect zonulin pathway resulting in leaky
gut [13]. Moreover, gut microbiota is one of the contributing fac-
tors controlling gut peristalsis [14]. Among the endocrine factors,
elevated levels of cortisol has been observed as contributing factors
in gut dysbiosis and is considered a cause of stress and depression
[15]. Thus, gut microbiota directly influences human health by
sensing, modulating and circulating a vast number of chemical sig-
nals coming from the environment.

The relationship between intestinal bacteria and neurological
diseases was first hypothesized by Elie Metchnikoff and colleagues
in 1900s, which has now been recognized by many research
groups. Neurodegenerative diseases (NDDs) were first believed to
be caused by defects in the nervous system neglecting the facts
that microorganisms in the gut possess the ability to produce
and modify various immune, metabolic and neurochemical factors
which are known to directly affect the nervous system [16]. NDDs
are mainly caused by oxidative damage, increased reactive oxygen
species (ROS) production, neuroinflammation and disruptive
energy metabolism, which on the other hand also affects the gut
microbial population [17]. Surprisingly, gut microbial composition
alters with the changes in the metabolism of the body from healthy
to diseased state [18,19]. This shows the intersection of gut micro-
biota between the host and the environment, and its morbid asso-
ciation with various neurological and psychological disorders. Gut
dysbiosis and neuroinflammation are consistent factors in the
pathophysiology of various neurological disorders. In this review,
we emphasized showcasing the role gut microbiota-mediated
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oxidative stress in neurodegeneration, including the explanation
of mechanisms of ROS production, why the brain is more suscepti-
ble to oxidative stress and how gut microbial metabolites influence
the oxidative stress-induced damage in the brain with a focus on
Alzheimer’s disease (AD), Parkinson’s disease (PD) and Traumatic
brain injury (TBI).

Despite the role of gut microbiota in the pathology of NDDs,
unsurprisingly, gut microbiota also has the potential to protect
the brain from damage either by releasing the metabolites gener-
ated by them from converting dietary fibers, polyphenols or host
molecules like bile acids and steroid hormones or their composi-
tion in the gut can be modulated by prebiotics in order to promote
neuro resilience [20]. Neuroprotective role of gut microbiota is
well documented in recent studies, it was observed that Lactobacil-
lus buchneri KU200793 isolated from Korean fermented food
showed higher antioxidant activity and was able to protect the
SH-SY5Y cells from 1-methyl-4-phenylpyridinium (MPP+), sug-
gesting its probiotic and neuroprotective effects [21]. Similarly, it
was reported that exopolysaccharides isolated from Lactobacillus
delbrueckii ssp. bulgaricus B3 and Lactobacillus plantarum GD2 pro-
tected SH-SY5Y cells from Ab(1–42)-induced apoptosis [22], which
potentiates their role as a promising natural chemical constituent
for the pharmacological therapy of AD. Moreover, treatment of
SH-SY5Y and mouse model with heat-killed strain of Rumnicoccus
albus showed the neuroprotective effects, it was found to be very
effective in reducing ROS levels and increasing superoxide dismu-
tase (SOD) and glutathione (GSH) levels in hydrogen peroxide
(H2O2) treated SH-SY5Y cells and in sodium arsenate treated ani-
mal models [23]. Likewise, anti-Alzheimer’s actions of Lactobacillus
plantarum MTCC1325 have been studied in Albino rats with AD
induced by D-Galactose (D-Gal) [24]. It has been shown that the
L. plantarum protects against memory defect in D-Gal and
scopolamine-induced AD in mice [25]. Taken together, these stud-
ies reflect the promising role of gut microbiota, their antioxidative
and subsequently, their neuroprotective roles. Based on these
foundational discoveries, we describe the role of gut microbiota,
their metabolites, along with anti-inflammatory and antioxidative
probiotics in neuroprotection. Also, we have gathered information
about the databases and in silico strategies utilized to study gut-
brain interactions. Altogether, this review will give a deep insight
into the dual role of gut microbiota in oxidative stress-induced
neurodegeneration and gut microbial metabolites-mediated
antioxidative mechanism-based neuroprotection.
ROS and oxidative stress

Oxidative stress corresponds to the disruption of redox signal-
ing pathway in cells due to an increase of ROS level more than that
of antioxidant levels. This state of imbalance results in deleterious
effects and is a leading cause of many neurological diseases. Every
chemical reaction involved in aerobic metabolism results in the
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formation of reactive intermediate products which are unstable
and short-lived, known as ROS [26,27].

Biomolecular oxygen (O2) possesses two unpaired electrons
which cannot be reduced completely, thus its incomplete reduction
results in the formation of highly electrophilic and short-lived ROS
likeH2O2, superoxide anion, nitric oxide, peroxynitrite anion, hydro-
xyl and peroxyl radicals [28]. Either ROS is generated as an interme-
diate in normal cellular processes via ROS generating enzymes or in
the presence of exogenous factors like drugs, toxins, and radiations
[29]. Neuronal tissues due to their high metabolic rate produces a
large amount of ROS in comparison to the other organs. Mitochon-
dria is consideredas themain cellular site of ROSgeneration inbrain,
where during the process of ATP generation (mitochondrial oxida-
tivephosphorylation), anion superoxide is generated as abyproduct,
which is then rapidly transformed intoH2O2 andO2 by SOD [30]. The
greater the amount of O2, the greater is the formation of superoxide,
which further results in more ROS like H2O2 and hydroxyl radicals
due to the addition of electrons from leaky electron transport chain
(ETC) (complex I and III) [31]. Mitochondrial ROS production also
indicates neuronal activity, as intense synaptic transmission boosts
superoxideproduction [32]. Thoughononehandmitochondrial ROS
can be regulated by intracellular calcium (Ca2+) levels [33], more-
over, increased mitochondrial ROS production is also associated
with the increased mitochondrial membrane potential. Besides
inner mitochondrial membrane, mitochondrial matrix enzyme,
aconitase also contributes to ROS production by transforming
H2O2 into hydroxyl radicals facilitated by iron-sulphur cluster in
Fenton reaction. Many other enzymes like external NADH dehydro-
genase, proline dehydrogenase, dihydroorotate dehydrogenase, and
complex IV, also have been reported as contributors in mitochon-
drial ROS production [34].

Besides inner mitochondrial membrane, monoamine oxidases
(MAO) present in outer mitochondrial membrane, present in most
of the cell types including neurons and is among the primary source
of ROS. MAO catalyzes the oxidative deamination of monoamines,
requiring cofactor FAD (flavin adenine dinucleotide), by utilizing
molecular O2 to remove an amine group from the molecule, where
H2O2 is produced as a byproduct of the reaction [35]..The two iso-
forms of MAO, namelyMAO-A andMAO-B have been known to reg-
ulate the redox state of glia and neuronal cells. MAO-A is mainly
found in the catecholaminergic neurons and is involved in oxida-
tion of noradrenaline and serotonin, whereas MAO-B is particularly
expressed in serotonergic neurons and glial cells and oxidizes b-
phenylethylamine [36]. Thirdly, an isoform of nitric oxide synthase
(NOS) nNOS present in neurons is also one of the sources of ROS in
brain, which is regulated by Ca2+ binding protein calmodulin. NOS
catalyzes the oxidation of L-arginine to L-citruline, producing nitric
oxide (NO), utilizing NADPH, tetrahydrobiopterin and O2 as a cofac-
tor [37]. Though on one hand NO acts as a critical signaling mole-
cule which regulates synaptic transmission, but is also capable of
interfering the redox homoeostasis by interacting with superoxides
to form highly reactive peroxynitrite compounds, which are
directly involved in causing nitrosative stress in cells and is associ-
ated with apoptotic and necrotic cell death at low concentration
and high concentrations, respectively [37].

Besides other enzymes, one of the major endogenous sources of
ROS in brain during physiological conditions includes NADPH
oxidases (NOX) which catalyze the oxidation of NADPH producing
superoxide as its main product. Though, NOX are found to be
primarily located in plasma membrane and phagosomes of
polymorphonuclear neutrophils, previous immunohistology
assessments of mouse and rat tissues showed its abundance in
cortex and hippocampus regions of brain [38,39]. Ca2+acts as a
prime activator of NOX, leading to the post synaptic localization
of the enzyme complex in neurons, thus showing the involvement
of NOX in neuronal activity [40]. Seven paralogs of NOX have been
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reported, namely NOX (1-5), dual oxidase DUOX (1 and 2), which
differ in their size and domain structure but are mainly involved
in ROS generation. The proteins get activated, undergo maturation,
stabilization and translocation across the membrane on interaction
with the other proteins, like NOX (1–3) gets activated by interact-
ing with p22 (phox) transmembrane protein along with G-protein
Rac. Similarly, NOX-4 gets activated by interacting with only p22
(phox) transmembrane protein, whereas NOX-5 and DUOX (1
and 2) gets activated by direct binding to Ca2+. Upon activation
NOX (1–3) and NOX-5 mainly catalyzes the production of superox-
ide and NOX-4, DUOX (1 and 2) are involved in the direct produc-
tion of H2O2 [41]. NOX paralogs are found to be widely distributed
in cortex, hippocampus and cerebellum in brain, most prominently
NOX-2, NOX-3 and NOX-4. Previous reports also revealed the syn-
ergistic relation between mitochondrial ROS and NOX-ROS, thus
supporting each other’s ROS generation [42]. To date, studies
reveal a pivotal role of NOX in mediating the progression of chronic
CNS diseases like AD, PD, amyotrophic lateral sclerosis (ALS) and
huntington’s disease (HD) [41]. Thus, development of isoform
selective NOX inhibitor can be a promising therapeutic approach
for the treatment of acute and chronic CNS disorders.

Within the cytoplasm, non-heme iron enzymes such as lipoxy-
genases catalyze the peroxidation of arachidonic acid in the pres-
ence of molecular O2 and generate superoxide and hydroxyl
radicals [43]. Many other enzymes in the cytoplasm like xanthine
oxidase, cytochrome P450 monooxygenase, cyclooxygenase, D-
amino oxidase are also important ROS producers [44]. In concert
with mitochondria, organelles like peroxisomes are also the site
of ROS production, where beta-oxidation of fatty acids catalyzed
by glycolate oxidase and xanthine oxidase results in superoxide
and H2O2 [27]. Also, increased ROS production occurs in endoplas-
mic reticulum due to unfolded protein response (UPR) [45].

Oxidative stress results in cellular damage by mediating three
main reactions namely lipid peroxidation, oxidation of proteins
and nucleic acid damage [46]. In fact, oxidative stress is considered
as a part of the normal physiological process during aging, but have
been known to be involved in chronic disorders of the brain like
AD, PD, HD, ischemic stroke, depression and sclerosis [46]. More-
over, it plays a significant role in lifestyle-related metabolic disor-
ders like Type 2 diabetes (T2D), non-alcoholic fatty liver disease,
non-alcoholic steatohepatitis, obesity, cardiovascular diseases
and cancer [47].
Role of ROS in brain under physiological condition

Though ROS at higher levels is considered harmful causing
biomolecular damage resulting in a wide range of cellular dysfunc-
tions, whereas at a safe steady level ROS play a useful biological
role. Under normal physiological conditions, extracellular ROS
helps in mitigating infections by eliciting innate immunity
responses. On the other hand, free radicals produced intracellularly
helps to stimulate signaling pathways, apoptosis and defense sys-
tem against oxidative stress. ROS also plays an important role in
activating nuclear transcription factor NF-jB, which triggers
inflammation leading to oxidative stress. Free radicals like
hypochlorous acid (HOCl) are produced in lysosomes by the action
of myeloperoxidases, which is used as a strong oxidative agent
against pathogens. Thus, ROS act as a strong participant in signal
transduction pathways regulating intracellular signaling [27,44].

With respect to CNS, ROS produced as a byproduct in many
reactions under the physiological condition not only helps in
modulating intracellular signal transduction pathways but also
regulates cell proliferation, differentiation, and maturation [48].
Previous reports showed that ROS production and redox balance
helps in mediating neuronal differentiation from precursor



S. Shandilya, S. Kumar, N. Kumar Jha et al. Journal of Advanced Research 38 (2022) 223–244
neuronal progenitor cells and the axon formation [49], also, it helps
in neuronal cell expansion in their niches [50]. Moreover, It has
been observed that redox signaling (ROS and oxidative states) also
regulates the functioning of transcription factors like (NF-jB),
nuclear factor of activated T-cells and the activator protein 1
(AP-1) along with the redox state of tyrosine phosphorylated pro-
tein PKC, thus plays an important role in influencing signaling cas-
cades involved in neurogenesis [51]. Also, ROS like H2O2 have been
observed to modulate the excitability of cortical neurons by
enhancing the intracellular Ca2+signaling [52]. In a similar study
it was observed that H2O2 increases the phosphorylation of ERK
and cAMP-response element-binding protein (CREB) in cortical
neurons and PC12 cells [53,54]. This shows that ROS plays a crucial
role in influencing signaling cascades in nervous system and can
act as a messenger in the signal transduction pathways.

ROS acts as a secondary messenger in various parts of the brain
like hippocampus, cereberal cortex, hypothalamus, amygdala and
spinal cord, thus helps in maintaining synaptic plasticity [55].
ROS was also found to be necessary for the long term potentiation
(LTP) in the hippocampus, which is associated with learning and
memory in mammals, thus, showing the involvement of ROS in
synaptic enhancement [56,57]. ROS also affects the pain related
behavior by its involvement in increasing the excitability of the
central nucleus of amygdala, a region of brain responsible for emo-
tional aspect of pain modulation [58]. Likewise, in spinal cord, neu-
roplasticity processes related to neuropathic and inflammatory
pain is also controlled by ROS acting as a signaling molecule [59].
Reports from animal studies showed that NOX mediated direct
production of ROS act as an important physiological process which
helps in maintaining synaptic plasticity mechanisms particularly
in hippocampus and visual cortex [60]. Moreover, dose dependent
effect of H2O2 was observed to be an obligatory process to bring the
redox changes and thus regulating synaptic plasticity [61].

Why brain is vulnerable to oxidative stress?

Approximately 20% of the basal O2 is consumed by brain to sup-
port the ATP driven activity of � 86 billion neurons connected by
trillions of synapses, supported by 250–300 billion glia [62]. It
was reported that neurons (�1.9 million) and synapses (�14 mil-
lion) begin to perish every minute when brain is deprived of O2

[63]. Though O2 is essential for the brain functioning, but ambigu-
ity always lies in the fact that how oxidative stress causes neurode-
generation. O2 derived free radical and non-radical species
produced during redox signaling equally sustain brain health
depicting its potential positive functionality [64]. It has been
reported that O2

.- and H2O2 produced by the action of NADPH oxi-
dase (NOX-2) are involved in maintaining the growth of neuronal
progenitor cells via PI3K/AKT pathway [49], also deletion of NOX-
2 shows its importance in regulating cognitive functions of brain
[65]. Recently, it is reported that NOX-2 derived H2O2 acts as an
endogenous chemo-attractant supporting axonal path finding as
well in its regeneration [66]. Thus, diverse reactive species are used
by brain to perform signaling functions which make it more sus-
ceptible to oxidative stress. There are many other biochemical
events which make the brain more vulnerable to oxidative stress
that includes:

a) Ca2+ transients during action potential are required to main-
tain the bidirectional synaptic plasticity. When high Ca2+

transients across the membrane are disrupted, the free intra-
cellular Ca2+ concentration increases, which then activates
neuronal NOS (production of NO.), phospholipase A2 and
calpins damaging cytoskeleton. High NO. also binds to
cytochrome C oxidase, inhibiting mitochondrial respiration.
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Further, NO. reacts with O2
.- (from dysfunctional mitochon-

dria) to form ONOO–. Ca2+ overloads in mitochondria abol-
ishes the ATP generation by mediating efflux of Ca2+/ H2O2

via mitochondrial permeability transition pore (mPTP), this
leads to necroptosis. Thus, disruption of Ca2+ homeostasis
makes brain susceptible to oxidative stress [67,68].

b) Glutamate act as an excitotoxic amino acid for neurons and
when taken in large amounts, it damages the cell by necro-
sis. This damage results in the release of large amount of glu-
tamate in the extracellular environment, which also binds to
receptors on adjacent neurons leading to a sustained release
of Ca2+and Na+ in the cell. Reactive species like ONOO– inhi-
bits the conversion of glutamate to glutamine by inactivat-
ing glutamine synthetase. Also, glutamate inhibits the
exchange for intracellular glutamate for intracellular cys-
teine via Xc

- transporters, resulting in depletion of GSH,
which in turn leads to ferroptosis mediated death of neurons
[69,70].

c) Brain is enriched with redox transition metal ions like
Fe2+and Cu+ which act as cofactors for many enzymes. Stress
factors causing brain damage release metal ions capable of
catalyzing free radical reactions. Moreover, the iron released
have a prolonged existence because cerebrospinal fluid (CSF)
has little or no iron binding capacity [71,72].

d) Neurotransmitters like dopamine, serotonin and nore-
pinephrine undergo auto-oxidation to generate ROS . Briefly,
dopamine reacts with O2 to produce semiquinone and O2

. ,
which further reacts with O2 to generate quinone. Quinone
so produced is re-oxidized by O2 to quinol and H2O2, where
Mn2+ reacts with H2O2 to produce OH. Such auto-oxidation
results in mitochondrial and lysosomal dysfunction [73,74].

e) Brain is also sensitive to oxidative stress induced by glucose.
To utilize most of the glucose for pentose phosphate path-
way, neurons degrade phosphofructokinase, a rate-limiting
glycolytic enzyme. The absence of glycolytic rate results in
protein glycation and the formation of advanced glycation
end products (AGE). AGE impairs proteins and mitochondrial
function by inflammation-induced oxidative stress [75-77].

f) Brain possesses a high content of polyunsaturated fatty acids
particularly docosahexaenoic acid (DHA), which makes it
more prone to oxidative stress because of lipid peroxidation
and using peroxide lipids by brain to signal. Products of lipid
peroxidation like 4-Hydroxynonenal inactivates glutamate
transporters by increasing Ca2+ levels, thus are neurotoxic.
Lipids peroxides also inactivate alpha-ketoglutarate dehy-
drogenase, act as vasoconstrictive agent, damages protea-
some, and is found to be a consistent factor in NDDs like
AD [78,79].

g) Microglia, the resident immune cells of the brain are impor-
tant for brain development and function, but during the nor-
mal activity of phagocytosis, it produces O2

-. and other
reactive species. Active microglia produce O2-. via NOX-2.
Thus, microglia activity depends on the total O2 bioavailabil-
ity and depicting damage to synapse by consuming more O2

to produce O2
- .. Reactive species like H2O2 and NO. attracts

microglia at the site to enforce local inflammation driving
neurodegeneration [80].

h) Brain is prone to disrupted redox homeostasis due to modest
antioxidant defense system in comparison to other tissues.
Catalase content in neurons is much lower (50 times) than
that of hepatocytes. Moreover, their presence in peroxi-
somes restricts its activity to act on H2O2 produced in other
subcellular compartments. Similarly, neurons possess very
low levels of GSH, which makes them sensitive to ferroptosis
and resist them to metabolize electrophiles [81-83].
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i) Hemoglobin is considered as neurotoxic for the brain when
its reaction with excess of H2O2 results in the release of
prooxidant iron ions and heme. Free heme is the strongest
promoter of lipid peroxidation. Moreover, its binding with
NO. leads to vasoconstriction [84,85].

j) Though brain contains low levels of cytochromes P450
enzyme, CYP2E1 that makes brain prone to oxidative stress
due to leakage of electrons while catalyzing reactions. Study
showed that its level might increases due to the consump-
tion of ethanol and smoking [86].

k) DNA repair enzymes like poly-ADP-ribose polymerase
(PARP-1), repairs DNA damage by cleaving NAD+ and bind-
ing ADP ribose to nuclear proteins. But, overactivation of this
enzyme leads to depletion of neuroprotective NAD+, restrict-
ing energy production and opening of transient receptor
potential melastatin (TRPM2) Ca2+ channels that results in
neuronal cell death [87].

l) Being single-stranded and non-protected by histone pro-
teins, RNA is more vulnerable to oxidation. Oxidized RNA
halts the protein synthesis by ribosomes and might result
in unfolded, truncated proteins if left unrepaired. It was
reported that oxidized RNA along with redox-active transi-
tion metals catalyzes Fenton’s reaction. It was also reported
that oxidized CuZn-SOD mRNA is a preclinical sign of ALS.
However, there is a need to investigate its potent role in neu-
rodegeneration [88].

Gut microbiota, oxidative stress and neurodegeneration

Gut-brain axis under physiological condition

Gastrointestinal (GI) tract encompasses trillions of commensal
microorganisms and �1000 of its species which plays an important
role in preserving membrane barrier functions [2]. These microor-
ganisms are permanent residents of small intestine and colon,
involving the constant flux of molecules within the host organisms,
thus regulating a variety of metabolic functions [58]. The microbial
community gets stabilized in the host GI tract within two years
after birth, but their composition varies among individuals and
can change depending upon external factors like age, health, genet-
ics and lifestyle [89]. Luminal side of the GI tract is exposed to diet-
ary components and gut microbiota, moreover, gut tissue is housed
by 70% of immune cells and innervated by neurons which connects
the gut and brain, involving constant communication between the
gut and the brain [2]. Communication between the gut microbiota
and brain involves the four main routes; the first important mode
includes the activation of vagus nerve which connects the
muscular and mucosal layer of GI tract to the brain stem. Recent
reports show that enteric pathogens and probiotics regulates the
host behaviors like anxiety, feeding, and depression by altering
c-Aminobutyric acid (GABA), oxytocin and brain derived
neurotrophic factor (BDNF) signaling in brain via activation of
vagal neurons [90,91]. Though, one report showed that indole, a
bacterial metabolite obtained from tryptophan, increases
anxiety-like behavior in rats via vagus nerve activation, but specific
metabolites mediating these effects still need to be identified [92].
The second route of communication influencing brain activity
directly or indirectly involves the signaling through serotonin
released by enterochromaffin cells (EC) present in gut lining. A
study showed the increase in serotonin and serotonin precursor
levels in mouse models of depression, when treated with probiotic
Bifidobacterium spp., improving their depressive state [93]. Simi-
larly, it was reported that metabolites from spore-forming bacteria
(Clostridium spp.) were able to stimulate serotonin production
from EC [94]. Thirdly, gut microbiota plays an essential role in
development, maturation and activation of microglia. In a study,
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it was reported that germ free (GF) mice carries larger number of
immature microglia than conventional mice, moreover when trea-
ted with Bifidobacterium spp. activates microglial cells through
transcriptional activation [95]. Changes in microglia functioning
have been observed in behavioral and NDDs, showing the influence
of gut microbiota on NDDs mediated via microglia. Gut microbiota
also affects the nervous system via systemic immune system i.e.,
cytokines and chemokines. Study showed that GF mice possess
greater blood–brain barrier (BBB) permeability in comparison to
conventional mice, thus making brain accessible to microbial prod-
ucts subsequently leads to neuropathological conditions [96]. Last
but not the least, gut microbiota communicates by a direct transfer
of chemical signals to the brain. For example, fermentation of diet-
ary fiber by intestinal bacteria produces short chain fatty acids
(SCFAs) which have been shown to regulate neuroplasticity in
CNS, and was also reported to improve the depressive behavior
in mice [97]. Furthermore, gut microbiota like Bacteroides, Bifi-
dobacterium, Parabacteroides and Escherichia spp. are capable of
producing neurotransmitter GABA which implicates that gut
microbiota modulates the concentration of neurotransmitters in
host organism [98].

Gut microbiota-mediated oxidative stress and neurodegeneration

Four main phyla of commensal bacteria colonize in human gut
which includes Firmicutes, Bacteroidetes, Actinobacteria, and
Proteobacteria. Among them, Firmicutes including Lactobacillus,
Streptococcus, Mycoplasma and Clostridium along with Bacteroide-
tes encompass 90% of the total. Both commensal and pathogenic
bacteria in gut are able to alter the cellular ROS by modulating
mitochondrial activity [99]. Commensal bacteria produce formy-
lated peptides which bind to G protein-coupled receptors (GPCRs)
on macrophages and neutrophils, which triggers inflammation in
epithelial cells. This process results in superoxide production by
NOX-1, increasing cellular ROS [100]. Gut Lactobacilli and Bifidobac-
terium possess the ability to convert nitrate and nitrites into NO,
making the gut epithelia a rich source of NO. similarly, Streptococ-
cus and bacilli produce NO from L-arginine using NOS [101]. NO in
nanomolar concentration is considered to be neuroprotective and
is a neurotransmitter for noradrenergic, noncholinergic enteric
neurons. While at a higher concentration, it results in the detri-
mental effect caused by the production of reactive oxygen and
nitrogen species (RONS) like superoxide and H2O2, which further
forms highly reactive hydroxyl radicals associating it to neuroin-
flammation, axonal degeneration and NDDs [18]. Beneficial
metabolites like SCFAs produced by gut bacteria help to reduce
ROS by influencing mitochondrial activity. This will be discussed
more in detail in another section.

Membrane associated molecular pattern (MAMP) maintains
structural integrity and basic functions of all classes of microorgan-
isms and are detected even by brain. These are diverse chemical
groups including peptides, nucleotides, carbohydrates and lipids
[102]. When such molecular patterns are undetected by the host,
it may escort acute to chronic inflammation and is found to alter
brain development and function. These highly conserved structural
motifs bind to pattern recognition receptors (PRR) present on cells
of innate immune system, thus inducing mitochondrial ROS pro-
duction and activation of NF-jB pathway leading to inflammatory
responses, causing neuronal stress and cell death [103]. In a recent
study, it was reported that bacterial cell-wall component peptido-
glycan translocate to the developing brain affecting gene expres-
sion and causes a change in social behavior [104]. Similarly,
lipopolysaccharide present in Gram-negative bacterial cell-wall
was found to impair fetal brain development, acute depression
and cognitive impairment in mice [105]. Moreover, acute and
chronic exposure of MAMP was observed to be a responsible factor
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in developing disease symptoms in PD, autism spectrum disorder
(ASD) and synucleinopathy models [106]. Apart from MAMPs, bac-
terial toxins produced by opportunistic pathogens also exert a neg-
ative impact on host nervous system. Lethal toxins like toxin B,
enterotoxin and epsilon toxin produced by Clostridium spp. were
discovered to decrease neuronal viability and also inhibit the
release of neurotransmitters by reaching the brain via disrupted
BBB [107]. Enterotoxins and cereulide produced by Staphylococcus
spp. and Bacillus spp. were found to induce vomiting and sickness
behavior by stimulating vagus nerve [108109]. Pathogenic bacteria
like Salmonella and E. coli are able to degrade sulphur containing
amino acids, thus producing hydrogen sulphide (H2S) in the gut.
An increase in H2S levels imposes change in various metabolic
activities like increased lactate and decreased ATP production,
inhibition of cyclooxygenase 2 (COX-2) activity [110], decreased
consumption of O2 by mitochondria and an increased expression
of pro-inflammatory cytokines [111] and is known to stimulate
hypertension and neuroinflammation [112]. Fig. 1 shows the role
of gut microbiota-mediated oxidative stress in neurodegeneration.

Etiopathology of NDDs like AD and PD involves the intraneu-
ronal protein misfolding and its aggregation. Moreover, oxidative
stress is also considered as one of its pathogenic factors, but the
exact underlining mechanism is still unknown. The first evidence
showing the relationship of NDD pathology with gut microbiota
was shown by Heiko Braak group, where they found the a-
synuclein aggregation in submucosal Meissner’s and Myenteric
Auerbach’s plexuses in the gut of PD patients, suggesting the role
Fig. 1. Role of gut microbiota in neurodegeneration. (A) Communication between gut an
microbial molecules like neurotransmitters, amino acids, short-chain fatty acids (SCFA
(MAMPs) interacts with host immune system via circulation affecting metabolism and th
vagus nerve via enteric nervous system to the brain. Conditions like stress causes the hyp
release of adrenocorticotrophic releasing hormone (ACTH), subsequently activating the
when, there occurs a condition of gut dysbiosis, there is a decrease of anti-inflammtory m
with an alteration of beneficial bacteria to that of pathogenic in the gut. This results in
increase in peripheral immune responses, thus increasing oxidative stress in central nerv
observed in cell organelles like mitochondria, endoplasmic reticulum (ER) and peroxisom
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of gut microbiota in initiating the a-synuclein aggregation in the
gut, which is then ascended trans-synaptically to CNS neurons
causing neurodegeneration [113]. Interestingly, microbiota-
mediated proteinopathy and neuroinflammation is termed as
‘‘mapronosis” showing their interim relationship [114]. So far,
numerous studies have shown the altered gut microbiota composi-
tion in neurological disease state in comparison to healthy individ-
uals, but further work is needed to identify the mechanisms on
how bacteria and bacterial factors influence the disease progres-
sion. Here, we describe the recent work depicting the link between
gut bacteria, oxidative stress and NDDs, focusing on AD, PD and
TBI.

Gut microbiota-mediated oxidative stress in Alzheimer’s disease

Alzheimer’s disease (AD) is the leading cause of dementia,
affecting over 50 million population worldwide, where its preva-
lence is higher in older population, with about 80 per 1000 individ-
uals above 85 years of age. Non-symptomatic pathology of AD is
thought to begin approx. 20 years before the symptoms like mem-
ory loss and cognitive deficits arise [115]. Pathological changes in
brain associated with AD include the extracellular accumulation
of protein amyloid-beta (Ab-amyloid plaques) and the intracellular
accumulation of tau proteins (tau tangles) [116]. This abnormal
accumulation of proteins leads to activation of microglia for the
clearance of Ab and tau proteins, but with subsequent aging,
chronic inflammation occurs causing neuronal cell death, leading
d the brain involves neural, metabolic, endocrine and immunological pathways. Gut
s), amyloid, lipopolysaccharide (LPS) and microbe-associated molecular patterns
e nervous system of the host and, also it affects the brain by direct activation of the
othalamic neurons to secrete corticotrophic receptor harmone (CRH), triggering the
release of cortisol, which affects intestinal barrier integrity affecting gut health. (B)
olecules (like SCFAs, H2) to that of pro-inflammatory molecules (LPS, amyloids) also
increase of intestinal and blood brain barrier permeability, subsequently causing
ous system (CNS). An increased production of reactive oxygen species (ROS) can be
es in neurons, along with neurotoxin aggregation, resulting in neurodegeneration.
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to atrophy [117]. Despite of rare genetic mutation causing Ab accu-
mulation 20 years before onset, followed by decreased glucose
consumption by brain 18 years before and atrophy began 13 years
before the development of disease [118], many cross-sectional
studies have documented modifiable risk factors as an etiopathol-
ogy of AD [119]. Among the possible risk factors, the role of oxida-
tive stress and gut microbiota has attracted the scientific
community and is considered as an immediate plausible conse-
quence of neurodegenerative processes.

In addition to high energy demands of brain, the link between
oxidative stress and AD is reflected in many studies which showed
the alteration in antioxidant defense system of the brain i.e.
changes in activity and levels of SOD and catalase enzyme [120].
Likewise, oxidative stress biomarkers like malondialdehyde, 4-
hydroxynonenal, and F2-isoprostane (lipid oxidative damage);
protein carbonyls and 3-nitrotyrosine (products of protein oxida-
tion), 8-hydroxydeoxyguanosine (nucleic acid oxidation) were
found at high levels in blood and CSF [120], also their concentra-
tion was found proportional to that of cognitive impairment and
brain weight [121]. ROS production in AD brain is also character-
ized by dysfunction in cellular organelles like mitochondria (defi-
ciency of cytochrome C oxidase) [122], endoplasmic reticulum
due to UPR [123], accumulation of metal ions in neuretic plaques
[124] and due to the hyperactivation of microglia followed by
the overexpression of NADPH oxidase [125]. There is also an
inter-relationship between Ab deposition and oxidative stress i.e.
Ab aggregation induces oxidative stress (also in organelles like
mitochondria, ER and golgi apparatus) and oxidative stress induces
Ab accumulation [126]. Even, aggregation of tau proteins in neu-
rons leads to decreased NADH-ubiquinone reductase activity
resulting in increased ROS production and mitochondrial dysfunc-
tion [127].

Recent facts and figures show that AD is not only a result of con-
fined brain inflammation but is also a consequence of peripheral
inflammation [128]. This is supported by the fact that gut dysbiosis
leads to inflammation which increases with age, disruption of BBB,
activation of immune system followed by neurodegeneration, on
the other hand, healthy and well-balanced gut helps to decrease
detrimental effects produced by ROS [19]. Individuals suffering
from AD have been identified with decreased population of com-
mensal bacteria such as Bifidobacterium spp. and Firmicutes, and
an increased abundance of Escherichia, Shigella spp. and Bacteriode-
tes, followed by increased inflammation and Ab accumulation
[129]. similarly, decline in Ab plaque formation was seen in
APP/PS1 mice model when treated with the combination of
broad-spectrum antibiotics [130]. Likewise, 5xFAD mouse model
of AD showed shifts in microbiota population towards proinflam-
matory species along with the changes in amino acid catabolism,
and conversely, treatment with antibiotics reversed the effects,
suggesting the possible link between severity of disease and trans-
formed gut population [131]. Microbial amyloid protein formed in
the gut activates the Toll-like receptors (TLR) and cluster of
differentiation 14 (CD14) facilitated immune response leading to
overlooked misfolded Ab with impaired Ab clearance, subse-
quently increasing cytokine production resulting in disrupted
intestinal and BBB [114]. Also, it was shown that levels of enteric
hormones decrease in AD patients, on the contrary, gut microbiota
metabolites like H2S and trimethylamine increase, enhancing its
rigor [132].

Age-related decrease of gut microbial biodiversity is also con-
sidered as one cause of dementia. It has been shown that with
growing age, there is a decrease in Bifidobacterium spp. and an
increase in Proteobacteria, where dementia results not because of
decrease in SCFA’s but due to interference in lipid metabolism.
Bifidobacterium plays an important role in regulating cholesterol
levels directly facilitating its fecal elimination and indirectly by
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increasing the serum leptin levels, thus involved in maintaining
hippocampal plasticity and memory functions [133,134]. Gut bac-
teria like Lactobacilli and Bifidobacterium metabolize an inhibitory
neurotransmitter GABA [135]. In a study, it was observed that
synaptic plasticity in hippocampus was altered in APPSwe/PSEN1
DeltaE9 bigenic mouse model of AD, where reduced GABA produc-
tion was found with a concomitant increase in glutamatergic
neurotransmission [136,137]. Although, reports show that phylum
cynobacteria produces neurotoxins causing cognitive impairment,
but no relation has been observed with AD [138].

Another possible connecting link, cerebral amyloid accumula-
tion and gut microbiota involve the mechanism of cross seeding
of microbial amyloids in a manner similar to prion propagation,
thus different amyloid conformers formed induces toxicity at dis-
tinct levels in their cellular targets, hypothesizing the existence
of AD phenotypes [139]. In addition to gut microbiota, a link
between commensal bacteria in oral cavity and AD was also stud-
ied. Interestingly, poor oral hygiene and teeth loss was found to
cause an increased risk of early onset of AD [140].
Gut microbiota-mediated oxidative stress in Parkinson’s disease

Parkinson’s disease (PD) is pathologically characterized by pro-
gressive degeneration of dopaminergic neurons, aggregation of
phosphorylated protein a-synuclein, excessive ROS production,
mitochondrial dysfunction and microglia activation [141]. Symp-
tomatically, it is characterized by inability of the patients to control
voluntary movements (tremors, muscle rigidity, difficulty walking
and hunched posture) due to damage in substantia nigra and stria-
tum regions of the brain. It is the second most common NDD
affecting more than 1% of elderly population worldwide [142].
The first report on relationship between gut and PD was mentioned
in an essay on shaking palsy by James Parkinson in 1817 [143].
Braak’s hypothesis supported this view showing the initiation of
pathology in the gut, then affecting the brain. Accumulating evi-
dences show that gut inflammation, early accumulation of phos-
phorylated a-synuclein transcending to the dorsal motor neuron
of the vagus nerve, constipation problems and increased intestinal
permeability are common in PD patients, suggesting a strong rela-
tionship between gut microbiota and PD pathogenesis [144]. More-
over, it was observed that risk of developing PD decreases in those
individuals who have gone for vagotomy [145]. In addition, lower
levels of GSH, and higher level of iron and H2O2 makes substantia
nigra pars compacta (SNc) neurons susceptible to oxidative stress
[146]. Also, lipid peroxidation and dopamine oxidation in this
region leads to neuronal cell death. Studies also show that mito-
chondrial respiratory chain dysfunction leads to excessive ROS pro-
duction. It is supported by the fact that inhibitors of complex 1
induces cytotoxic effects on dopamine neurons [147], also patients
with pathology of a-synuclein, phosphatase and tensin homolog
(PTEN)-induced putative kinase 1 (PINK1) and Parkin were
detected to have mitochondrial dysfunction with increased oxida-
tive stress [148]. Similar to AD, aggregation of abnormal protein a-
synuclein is interrelated to increased oxidative stress and vice
versa. Coming to the role of gut microbiota, some pathogenic
spp. release toxins causing mitochondrial dysfunction in cells of
the gut and ENS resulting in neurodegeneration [149]. The patho-
genic bacteria increase in gut of PD patients and their microbial
products are directly involved in PD pathogenesis. In support of
this fact, recently it was reported that pathogenic bacteria Escher-
ichia coli produces amyloid protein known as curli, which promotes
a-synuclein aggregation in gut and brain and was observed to
cause motor deficits in mice [150], On the other hand, when mice
were treated with gut restricted amyloid inhibitor, it has shown
the improvements in motor functions along with amelioration of
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constipation [151], showing the involvement of gut in etiology of
PD symptoms, supporting Braak’s hypothesis.

Gut inflammation caused by gut bacteria can be directly corre-
lated with progressive neurodegeneration in PD. Though serum
metabolic profile and gut composition are found altered in PD
patients, it was observed that in severe PD condition, Enterobacte-
riaceae level enhances in gut with very low level of anti-
inflammatory bacteria, also showing its parallel association with
gut inflammation in Crohn’s disease [152]. This shows that patients
with Crohn’s disease possess very high risk of developing PD. Sim-
ilarly, it was observed that Citrobacter rodentium infection in
mouse model (PTEN induced Kinase 1 (PINK1) knockout mice),
aggravated PD symptoms by inducing gut inflammation [153]. In
addition to induce inflammation, gut microbiota also exerts meta-
bolic effects, like its metabolites b-glucoronate, tryptophan and
SCFA’s were found to be altered in case of PD patients [154].
Recently, one striking attribute of gut microbiota was also reported
showing that it acquires the ability to reduce the efficacy of anti-PD
drugs either by decreasing its bioavailability or by increasing drug
inactivation, as observed in the case of standard levodopa treat-
ment [155,156]. Inclusive of these studies, decreased production
of H2 by gut bacteria is also found to be one of the contributing fac-
tors in PD [157]. A recent report showed that when 50% H2 satu-
rated water was given to rat and MPTP mouse model of PD, it
was found to be successful in reducing neuronal loss in substantia
nigra and also the oxidative stress markers and when double blind
randomized trial was performed in humans, an improvement in
motor ratings of PD patients was observed [157,158]. Further,
towards this notion, recent work on GF mouse model of PD with
overexpressed human a-synuclein gene showed the reduced level
of SCFAs along with the decreased microglia activation and
improved motor functions which suggests the direct involvement
of gut microbiota in enhancing PD. In addition to it, when gut
microbiota from PD patients was transplanted into GF a-
synuclein overexpressed mouse model, worsened the motor symp-
toms, suggesting the role of dysfunctional gut microbiota in PD
patients [151]. similarly, mouse model treated with neurotoxin
showed altered gut microbiota composition with increased levels
of pathogenic Enterobacteriaceae [159]. Furthermore, increased
Fermicutes to Bacteroides ratio (condition also in gut inflamma-
tion) was observed in mice treated with pesticide rotenone [151].
Strikingly, some specific bacterial species like Proteus mirabilis
were found to bolster neurodegeneration in mice [160]. Taken
together, these studies suggest that gut microbiota exacerbates
neuronal dysfunction and neuroinflammation in both human and
animal models of PD.
Gut microbiome and traumatic brain injury (TBI)

Traumatic Brain Injury (TBI) is one of the most prevalent injury
types sustained in the world population with an annual incidence
of �1.4 million cases in the United States, and is among the major
cause of death and disability [161]. The disabilities which occur in
TBI not only includes a primary mechanical damage of brain but
involves post injury secondary damages, which takes place at the
cellular and molecular level, and may lead to metabolic anomalies
like mitochondrial dysfunction, oxidative stress, inflammation,
microglia activation, excitotoxicity, resulting in temporary or life-
long cognitive impairments [162]. Moreover, severity of TBI is
not only focused on brain but can be a multiorgan damage and is
considered as a heterogenous pathobiological condition. Due to
the heterogenous nature of brain injury, therapies for TBI-
induced neuropathologies are still lacking, pertaining to the con-
sideration of novel therapeutic regimens. Towards this approach
gut eubiotic therapeutics have gained much attention, because of
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its capability to restore the bifacial relationship between gut dys-
biosis and TBI [163,164].

Growing line of evidences reveal that there exists a bi-
directional relationship between a gut microbiome and TBI injury.
One of the systemic manifestations of TBI has been observed as a
disruption of intestinal motility and permeability, mucosal dam-
age, histopathological alterations of intestinal villi, thus indicating
the perturbance in the composition of gut microbiome [165-167].
Conversely, it has been observed that gut dysbiosis also influences
the pathophysiology of traumatic CNS injury, alterations in BBB
permeability and activation of microglia, leading to severe reper-
cussions [168-170]. Recent report showed that a mice exposed to
mild and repetitive brain injury for 20 days show a progressive
emergence of white matter damage, cognitive deterioration and a
mild, transient gut dysbiosis [171]. Similarly, it was observed that
depletion of gut microbiota in murine model of TBI prior to and fol-
lowing brain injury resulted in an increased CA1 hippocampal neu-
ronal density, attenuated associative learning deficit and had
reduced lesion volume [172]. Recent study also claims that gut
dysbiosis takes place after traumatic spinal cord injury which
resulted in intraspinal inflammation and lesion pathology [173].
Also, changes in two major order of bacteria in gut Bacteroidales
and Clostridiales was observed i.e �30% decrease in phylum Bac-
teroidetes and �25% increase in phylum Firmicutes. This was
accompanied by the consistent changes in minor taxa including
Anaeroplasmatales, Turicibacterales and Lactobacillales. Such
changes were found to be persistent and lasted for about 4 weeks
post injury [174]. A similar modulation in gut microbiome popula-
tion, but an inverse relation of decrease in Firmicutes and an
increase in Bacteroidetes was found to occur 2 h following injury
and being persistent for about 7 days in rodent model of moderate
TBI [175]. Likewise, recent report showed that their occurs a rapid
significant decrease in three species Lactobacillus gasseri,
Ruminococcus flavefaciens, and Eubacterium ventriosum and an sig-
nificant increase in Eubacterium sulci, andMarvinbryantia formatex-
igens in human gut microbiome just in 24 h after TBI in mice [176].
Furthermore, a decrease in Bacteroidales, Fusobacteriales, and Ver-
rucomicrobiales, along with an increase in Clostridiales and Ente-
rococcus within 72 h were observed in severely injured patients
with polytrauma [177]. Gut microbiota also plays a very important
role in recovery from TBI, as observed in a recent report where gut
dysbiosis induced by a broad spectrum antibiotic before, during
and after TBI resulted in an increased neuronal loss, suppressed
neurogenesis as well as altered the microglia and peripheral
immune response along with the modulation in fear memory
response [178]. Thus, the influence of gut microbiota on TBI
patients is of paramount clinical significance because TBI patients
become susceptible to alterations in gut microbiota due to regular
antibiotic administration and prolonged hospitalization. Further-
more, detection of gut microbiota modulation might provide a
diagnostic tool for the identification of TBI severity, thus providing
targeted therapeutic approaches.
CNS antioxidants and neuroprotection

CNS is highly vulnerable to oxidative stress and leads the
neurological disorders. High level of ROS is generated during the
functioning of CNS due to high O2 demand and rush of
peroxidation-susceptible lipid cells. This oxidative metabolism
generates reactive species for transmitting redox signals to
regulate critical functions such as synaptic plasticity [29,179].
Antioxidants whether enzymatic or non-enzymatic, endogenous,
or exogenous, protects the brain against the oxidative stress by
preventing the generation of ROS or by scavenging the free radicals
or inactivate the free radical product. The first line of antioxidative
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defence mechanism involves the use of endogenous enzymes like
SOD, glutathione peroxidase (GPx), glutathione reductase, and
catalase [180]. Whereas, second line of antioxidative defence
involves the use of endogenous non-enzymatic molecules like
thioredoxin, ferritin, transferrin, ceruloplasmin, albumin, and met-
allothionein. Also, enzyme co-factors, i.e., coenzyme Q and alpha-
lipoic acid, and metabolites, i.e., bilirubin, melatonin, and uric acid
plays an important role in antioxidative defence mechanism
[181,182]. Similarly, natural dietary compounds like vitamins A,
E, and C, flavonoids, phenolic acids, and carotenoids are also known
to possess a strong possible antioxidative defence against oxidative
stress-induced neurodegeneration [182].

The antioxidant enzymes such as SOD decreases the concentra-
tion of superoxide anion by catalyzing the dismutation of
superoxide to O2 and H2O2; GPx reduce H2O2 and lipid peroxides;
thiol-specific peroxidases such as peroxiredoxins reduce the
amount of hydroxyperoxides, and catalase transforms H2O2 to
H2O and ordinary molecular O2 [29,183]. The free radicals activate
the transcription of genes involved in antioxidant pathways and
protect the cells from adverse effects. Glutathione is present in
low amount in the CNS which reacts with free radicals in its
reduced form to convert the H2O2 to H2O by self-catalyzing to
GS–SG and regenerates again to glutathione by a reductase [183].
Insufficiency of glutathione may limit the activity of peroxidases
that could make the neurons more susceptible to oxidative stress.
In-vivo and in-vitro studies performed till date showed that the
SOD and catalase improves the neuronal survival following the
Ab-induced neuronal toxicity [184-187]. Likewise, both thiore-
doxin and thioredoxin reductase are widely expressed in brain
and are known to exert neuroprotective effect against oxidative
stress models of HD and AD [188,189].

Another very important pathway is Kelch-like ECH-Associating
protein 1 nuclear factor erythroid 2 related factor 2-antioxidant
response element (Keap1-Nrf2-ARE). Keap1-Nrf2-ARE is highly
expressed in neurons and linked with the defense mechanisms
against oxidative stress associated with NDDs. It modulates the
activity of SOD, thioredoxin, peroxiredoxins, and GPx via transcrip-
tional regulation [190]. The importance of NF-jB is also reported as
a redox-sensor in CNS that is activated by ROS. Moderate level of
ROS phosphorylates NF-jB inhibitor that results in NF-jB activa-
tion. Activated NF-jB regulates the expression of anti-apoptotic
and inhibits caspase-dependent cell death pathways. However,
high levels of ROS inhibit the binding of NF-jB via inactivating it.
This mechanism promotes the apoptosis of cells and halts the
pro-survival pathways [29]. The regulation of antioxidant metabo-
lism of the CNS is tightly controlled where the role of gut microbes
is highly dynamic.
Gut microbiota in neuroprotection

Gut microbe-microbe and microbe-host interactions regulate
the level of exogenous and endogenous ROS via various metabo-
lites production such as absorbable vitamins, polyphenols, SCFAs,
BDNF, diffusible antioxidant and oxidant gases, etc. Gut microbes
also control the permeability of metabolites to BBB, tight junction
integrity and intestinal barrier, modulate the immune system and
impede the intestinal colonization of pathogens [191]. The vagus
nerve of the parasympathetic nervous system senses the gut
metabolites and communicates to CNS about the gut information
to generate specific responses. Under the stress condition, the
vagal tone is repressed and shows detrimental effects such as irri-
table bowel syndrome (IBS) and inflammatory bowel disease (IBD)
due to dysbiosis [192]. Ab proteins involved in the pathogenesis of
AD are expressed by gut bacteria such as Escherichia coli and
Salmonella enterica in ENS [183]. Beneficial gut microbes also
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produce dopamine, serotonin, and GABA. These are the CNS neuro-
transmitters which modulate the ENS activity and may correlate
[179]. In some studies, it was revealed that gut microbes manage
the activation and maturation of microglia, and activated microglia
releases significant amounts of inducible nitric oxide synthase
(iNOS) to regulate NO production. Dysbiosis provokes the inflam-
matory iNOS and causes neuroinflammation [183].

As we have seen the potential role of gut microbiota as well as
essential role of oxidative stress in mediating neuronal disorders,
in recent years, a growing need and a major scientific focus is on
developing antioxidant-based therapies for treating oxidative
stress-induced NDDs. Antioxidants are chemical or natural sub-
stances capable of counteracting oxidative stress induced by
ROS/RNS [193]. Though a potent therapeutic effect of antioxidants
has been observed on diseases like diabetes, arthritis, cataract and
osteoporosis, antioxidant therapies used for CNS disorders are lim-
ited and still requires deep mechanistic understanding [194]. Con-
trary to the antioxidant therapies, dichotomous role of gut
microbiome is observed, which one hand is responsible for the
basic underlying mechanism of neurodegeneration (gut dysbiosis
and neuroinflammation) and on the other hand, gut microbiome
and its metabolites regulate many associated pathways suggesting
their neuroprotective therapeutic role. Microbial molecules like
protein, vitamins are produced via multistep biosynthetic path-
way, which may exert beneficial or detrimental effects on the host
system [16]. Therefore, a healthy gut microbiome maintained with
a proper diet including prebiotics and probiotics is a prerequisite
for maintaining neuronal health [195]. Fig. 2 shows the role of
gut microbiota metabolites along with the modulation procedures
on gut microbiota and their effect on NDDs. Here, we review how
bacterial metabolites (their natural, transformed, and dietary
metabolites) help to combat oxidative stress-induced neuronal
damage. Moreover, we will further discuss about the role of antiox-
idative and anti-inflammatory probiotics/prebiotics in neuropro-
tection. Table 1 shows the recent studies on gut microbiota
showcasing its neuroprotective role.

Gut microbiota metabolites in neuroprotection with their cell-specific
responses

Gut microbiota interaction with host molecules
Bile acids. Bile acids are produced in liver and are released in the
intestinal lumen, primarily involved in the solubilization of lipids
and fat-soluble vitamins, signaling in energy metabolism and is
also known to play an important role in physiology and pathophys-
iology of the brain [196]. Bile acid influences neuronal activity in
different brain regions and also vagal neuronal activity either by
directly binding the receptors in brain crossing BBB, or by indi-
rectly inducing the release of fibroblast growth factor (FGF) and
glucagon-like peptide 1 by binding to gut receptors [197]. Bile
acids like ursodeoxycholic acid (UDCA) and tauroursodeoxycholic
acid (TUDCA) possess neuroprotective properties and lack of cyto-
toxicity as proved in their phase III clinical trials [198] and in an
animal study [199], respectively. Recent data shows that TUDCA
helps to attenuate autophagy, a- synuclein aggregation and
protein oxidation in chronic mouse model of PD [200]. Moreover,
it helps to prevent neuronal apoptosis in rats affected by
subarachnoid hemorrhage via Takeda G protein-coupled receptor
5/sirtuin-3 (TGR5/SIRT-3) pathway [201]. Likewise, UDCA showed
a neuroprotective effect in charged multivesicular body protein
2B (CHMP2B) Intron 5 models of frontotemporal dementia [202].
Gut microbiota in the intestinal lumen converts primary bile acids
(cholic acid and chenodeoxycholic acid) into secondary bile acids
by the action of dehydratases, involves deconjugation of amino
acids with bile salt hydrolases and other enzymatic processes,
which alters their nuclear receptor binding, solubility and



Fig. 2. Role of gut microbiota in neuroprotection. (A) Scheme of brain cell specific effects in response to beneficial metabolites released by gut microbiota in reducing
inflammation and oxidative stress. (B) Fecal microbial transfer (FMT) which involves the transfer of fecal bacteria from healthy individual to one having pathological
condition and was found to be an effective procedure in reducing the pathophysiology of neurodegenerative disorders such as Alzheimer’s disease (AD), Parkinson’s disease
(PD), Huntington’s disease (HD) and conditions like Multiple sclerosis (MS). (C) and (D) Antibiotic treatment and Probiotic treatment, respectively, which have shown the
considerable effectiveness in decreasing the pathogenesis of neurodegenerative diseases. (E) The germ-free mice (mice free from gut microbiota), showed the decrease in
neurodegenerative conditions and also used to study the effect of gut microbiota on brain physiology, thus showing the involvement of gut microbiota in neurodegeneration.
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circulation [203]. Changes in secondary bile acid levels have been
found in human and mouse model of AD [204], PD [205], ASD
[206] and multiple sclerosis [207]. Also, bacteria-modified bile
acids were found to be neuroprotective in case of ALS and stroke
[208]. Modulation of gut microbiota community can cause changes
in the level and properties of bile acids, which might be neurode-
generative or neuroprotective. It has also been reported that gut
microbiota-mediated increase in deoxycholic acids induces the
release of neurotransmitter serotonin in EC in mice [94]. Bile acid
metabolites were found to improve demyelination [209] and
reducing oxidative stress [210], potentiating its neuroprotective
role via acting on oligodendrocytes and microglia, respectively.
Still, the potential role and effects of microbiota manipulated bile
acid is unknown and remains to be defined clearly.
Steroid hormones. Signaling by steroid hormones is crucial for brain
development and functions (memory, decision making and sexual
behavior) [211]. While circulating throughout the body, steroid
hormone encounters microbiota in intestinal lumen [212]. Gut
bacteria modify steroid hormone in a deconjugation reaction medi-
ated by the action of b-glucuronidases and b-glucosidases, which
reactivates the hormone and prevent it from excretion. Thus, gut
microbiome influences the level of active and inactive steroid hor-
mones via degradation and activation pathways [213]. Androgens
and oestrogens are found to be influenced by gut microbiome. A
large number of enteric bacteria were found to metabolize oestro-
gens [214] and oestrogens also undergo oxidation–reduction reac-
tions in faecal samples [215], suggesting the role of gut microbiota.
It has been observed that gut microbiota also possesses the ability
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to convert testosterone [216] and cholesterol to androgens [217].
Microbial influenced oestrogens were found to be neuroprotective,
showing anti-inflammatory effects on microglia [218]. Also, altered
gut microbial community was observed to result in low levels of
oestrogen, which resulted in chronic inflammation[219] and cogni-
tive impairment [220]. Oestrogenic molecules also affects differen-
tiation and myelination in oligodendrocytes [221]. Recent report
also showed that even progesterone treatment in MPTP parkinso-
nian mouse model showed neuroprotective, anti-inflammatory
and immune-modulatory effects, but whether the neuroprotective
role begins in gut or brain is still unknown [222].
Gut microbiota interaction with dietary molecules
Amino acids. Dietary amino acids can also be metabolized by gut
microorganisms and their effect on the brain varies depending
upon the type and frequency of diet intake [223]. Although, gut
microbiota encoded amino acids circulate in the host, but those
affecting CNS are dietary amino acids metabolized by gut bacteria
[224]. Aromatic amino acids like tyrosine, tryptophan and pheny-
lalanine are metabolized by gut bacteria into SCFAs, indole deriva-
tives, neurotransmitters, organic acids, amines and ammonia
[225]. The end product of tyrosine metabolism is the formation
of two catecholamines, dopamine and noradrenaline from tyra-
mine intermediate. In vitro studies showed that large number of
gut bacteria can produce noradrenaline in millimolar range [226].
Recent report showed that non-adrenaline increases the supply
of glutathione from astrocytes by stimulating B-3 adrenoceptor,
thus protecting neurons from H2O2- induced neuronal death
[227]. It is found that tyrosine is also metabolized by gut



Table 1
Summary of various reported studies on the role of gut microbiota in neuroprotection.

Microbiota Neurodegenerative
disease

Model Study outcome Reference(s)

Lactobacillus buchneri KU200793 PD/AD SH-SY5Y cells Treatment with heat killed strain reduced Bax/Bcl-2
ratio and increased BDNF expression

[288]

Lactobacillus delbrueckii ssp. bulgaricus B3
and Lactobacillus plantarum

AD SH-SY5Y cells Protected cells from Ab-induced cytotoxicity [22]

Lactococcus lactis p62(SQSTM1)-engineered AD 3xTg-AD mice Diminished oxidative stress and inflammation,
reduced levels of amyloid peptides and improved
memory

[289]

Lacticaseibacillus rhamnosus HA-114 ALS/HD Caenorhabditis elegans
and mouse model of ALS

Restores lipid homeostasis and energy balance
through mitochondrial b oxidation

[290]

Clostridium butyricum AD APP/PS1 mouse model
of AD

Prevents Ab deposition, microglia activation,
production of TNF-a and IL-1b

[291]

Lactobacillus fermentum NCIMB 5221 AD APPswe and
PS11E9 mutant
transgenic mice

Ferulic acid produced by bacretia reduces oxidative
stress, Ab fibrillation and improves memory

[292]

Lactobacillus plantarum WCFS1,
E.coli Nissle and Bifidobacterium
infantis spp.

AD/PD NA Proficient in producing butyrate, propionate and
acetate

[293]

Lactobacillus plantarum
MTCC1325

AD D-galactose- induced AD
mice model

ATPase enzyme levels and Na+ and K+ ATPase activity
was restored required for potential neural activity

[294,295]

SLAB51 (Streptococcus
thermophilus, Bifidobacterium
longum, Bifidobacterium breve,
Bifidobacterium infantis,
Lactobacillus acidophilus, Lactobacillus
plantarum, Lactobacillus paracasei,
Lactobacillus delbrueckii subsp. bulgaricus,
L. brevis)

AD 3xTg-AD mice Inhibits Ab deposition, decreased acylation of p53
protein along with increase in SIRT1 deacetylase
activity and ADAM10-a secretase activity

[274]

Rumnicoccus albus NA Oxidative stress induced
Sprague Dawley rats and
SH-SY5Y cells

Reduced ROS levels and increased SOD and GSH levels
in oxidative stress condition

[23]

Lactobacillus
acidophilus and Bifidobacterium infantis

PD Human PD patients Reduced symptoms of abdominal pain and bloating [296]

Lactobacillus acidophilus, Bifidobacterium
bifidum, Lactobacillus reuteri,
and Lactobacillus fermentum

PD Human PD patients Decreased movement disorder society-unified
Parkinson’s disease rating scale scores

[297]

Lactobacillus casei Shirota PD Human PD patients Improved abdominal symptoms [298]
Lactobacillus acidophilus,

Lactobacillus casei, Bifidobacterium
bifidum, and Lactobacillus
fermentum

AD Human AD patients Decreased C- reactive protein (CRP) levels and insulin
resistance and neuronal cell death

[299]

Lactobacillus acidophilus, Bifidobacterium
bifidum, Lactobacillus reuteri,
and Lactobacillus fermentum

PD 6-OHDA treated male
Wister rats

Improved rotational behavior, cognitive function, lipid
peroxidation, and neuronal damage

[300]

Lactobacillus acidophilus, Bifidobacterium
bifidum and Bifidobacterium longum

AD Animal model of AD Improved cognitive performance and restored
synaptic plasticity

[301]

L. casei LC122 and B. longum BL986 Age related
neurodegeneration

C57BL/6 mice Attenuated oxidative stress, improved gut barrier
function and inhibited hepatic lipid accumulation

[302]

Lactobacillus johnsonii AD Germ free mice Decreased kynurenine and increased serotonin levels [303]
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microbiota in phenols like 4-ethyl phenol, which subsequently get
sulphated in host to 4-ethyl phenol sulphate, which is found ele-
vated in a mouse model of ASD, and also a urinary biomarker for
children with ASD [228]. Indole derivatives like tryptamine and
kynurenine are the products of tryptophan metabolism by gut bac-
teria, which are neuroactive molecules [92]. Indole propanoic acid,
an indole derivative act as an antioxidant reducing neuroinflam-
mation, and is observed to have a potential role in decreasing AD
pathology [229]. Kynurenine metabolites were found to affect anx-
iety, memory and stress-like behavior [230]. It has also been
observed that disturbances in kynurenine metabolic pathway pro-
mote inflammation, excitotoxic glutamate production, and free
radical attack, suggesting the neuroprotective role of balanced
kynurenine and its anti-inflammatory role in AD, PD and HD
[231]. Tryptophan metabolites help to decrease the inflammatory
responses of astrocytes by modulating its aryl hydrocarbon recep-
tor and also affects their interaction with microglia. Likewise, it has
also been observed that indoxyl-3-sulphate controls activation of
microglia and subsequently its interaction with astrocytes [232].
Amino acid glutamate is also converted by gut bacterial glutamate
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decarboxylases to form GABA, an inhibitory neurotransmitter,
which is observed to reduce depression and anxiety symptoms in
mouse model [90]. In case of amino acid arginine, it is metabolized
into four polyamines agmatine, putrescine, spermidine and sper-
mine, which act via glutamate receptors and are involved in main-
taining synaptic plasticity and memory formation [233]. Agmatine
shows the therapeutic effects in case of CNS disorders while acting
as a ligand for a-2 adregenic and imidazole receptors in brain
[234]. Spermidine also showed its neuroprotective effect in 3-
nitropropionic acid 3-NP model of HD [235]. Moreover, agmatine
was found to stimulate Nrf-2 signaling pathway, ameliorating
ROS production induced by lipopolysaccharide (LPS) [236]. In vitro
and in vivo studies also revealed that agmatine protects astrocytes
and microglia from damage induced by oxidative stress [237].
These studies suggest the potential role of gut microbial
endocrinology in neuroscience.

Dietary fibers. Undigested dietary fibers like complex carbohydrate
polysaccharides are acted upon by intestinal microbial enzymes
glycoside hydrolases and polysaccharide lyases and are converted
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to SCFAs via anaerobic fermentation [238]. Butyrate, acetate, and
propionate comprise SCFAs, which act as a source of energy for
colonic epithelial cells. Besides this, it also enters systemic circula-
tion, subsequently affecting physiological functions of many
organs including neural development and functions directly or
indirectly [238]. Reports reveal that when gut microbiota of AD
mouse model was modulated by treating with a mixture of probi-
otics or by using anti-inflammatory SCFAs, it helps to counteract
the progression of the disease [239]. Similarly, SCFAs were found
effective to exacerbate motor symptoms in GF mouse model of
PD [240]. SCFA, acetate crosses the BBB and activates the neurons
and modulates the level of neurotransmitters and neurotrophic
factors [241]. In a study, it was shown that propionate and butyrate
influence the intracellular potassium level in neurons [242]. Buty-
rate acts as a potent inhibitor of enzyme which regulates epige-
netic gene activation (histone deacetylase) and is found to act as
a potent anti-inflammatory agent in mouse model of AD, PD, HD,
stroke and memory impairment [238]. Interestingly, SCFAs inter-
fere in the interaction between Ab peptides to form neurotoxic oli-
gomers, thus preventing AD pathology [243]. It was also reported
that fecal microbiota transplantation from wild type mice to the
animal model of PD along with the butyrate administration
remarkably improved the motor symptoms and dopamine defi-
ciency [244]. When we look at the cell-specific responses, butyrate
has been shown to reduce neuroinflammation and oxidation in
astrocytes in vitro, and acetate is used as a source of energy by
these cells [245]. In a study, it was observed that SCFAs increases
the expression of tight junction proteins by binding to the SCFA
receptors on endothelial cells, thus helps in decreasing the perme-
ability of BBB and preventing the LPS-induced seizures and stroke
[246]. SCFAs reduce oxidative stress in the brain by decreasing
microglial activation [247], thus combating neuroinflammation in
AD and PD. Taken together, SCFAs obtained from dietary fibers
helps to improve brain health, depending upon the gut health of
the individual.

Polyphenols. Polyphenols are bioactive molecules present in plants
that plays a fundamental role in growth, protection and reproduc-
tion in plants [248]. Polyphenols are classified as flavonoids, phe-
nolic acids and tannins. The molecular structure of polyphenols
i.e., positions of hydroxyl group and nature of the substitution of
aromatic rings affords them the ability to scavenge free radicals
[248] and are widely studied as an antioxidative therapy for the
treatment of NDDs [249]. Unabsorbed polyphenol is converted into
bioavailable and bioactive metabolites [250] in the host by the
action of gut microbiota via hydrolysis and esterification, which
is further followed by modifications like methylation, sulfation,
hydroxylation before they reach the peripheral tissues [251]. Stud-
ies on different polyphenols like resveratrol obtained from grapes
and wines, curcumin and epigallocatechin-3-gallate from green
tea exerts neuroprotective effects by activating protein kinase
pathways like Keap1/Nrf-2/ARE, which are major pathways in alle-
viating both endogenous and exogenous ROS. It has also been
reported that bacterial polyphenolic metabolites such as 3-
hydroxybenzoic acid and 3-(30-hydroxyphenyl)propionic acid inhi-
bits amyloid aggregation, thus facilitates to inhibit the progression
of AD [252]. Similarly, it has been observed that a flavonoid quer-
cetin act as BACE-1 inhibitor [253]. Moreover, natural flavonoid
proanthocyanidins mitigate rotenone-induced oxidative stress in
dopaminergic neurons in vitro [254]. Also, polyphenols like ferulic
acid produced by gut microbiota promote neurogenesis and have
shown the neuroprotective role in mouse models of AD [255]
and cerebral ischemia [256]. Equol and Enterolactone are also
derivatives produced by gut bacteria by metabolizing phytoestro-
gen, one of the polyphenols [257], which might have an effect on
classical neuroprotective pathway mediated by oestrogen recep-
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tors. Interestingly, polyphenols can also modulate the composition
of gut microbiota [258], which further convert them into anti-
inflammatory and neuroprotective metabolites.
Vitamin B and vitamin K

Gut microbiota also acts as an important source of vitamins par-
ticularly vitamin B and K, which are not only essential for the gut
microbial metabolism but also show it effects on physiological
pathways in the host [259]. Gut bacteria like Escherichia coli, Kleb-
siella pneumoniae, Propionibacterium, and Eubacterium produces
vitamin K, B2 (riboflavin) is produced by Bacillus subtilis and
E. coli; B9 (folic acid) by Bifidobacterium, Lactococcus lactis and
Streptococcus thermophilus; and B12 (cobalamin) is produced by
Lactobacillus reuteri and Propionibacterium freudenreichi [260].
Though dietary vitamins are absorbed through small intestine,
uptake of microbiota-derived vitamins occurs in the colon. To pre-
vent hemorrhagic disease in neonates, prior to the establishment
of gut microbiota, vitamin K is administered as an essential agent
for the process of thrombosis [261]. Moreover, vitamin B and K
are found to be important for brain development and function
[262]. In the case of NDDs, many studies have shown the effective
role of vitamin B and K in improving neuronal health. Vitamin K
deficiency was found to be correlated with the pathogenesis of
AD, similarly, increased uptake of dietary vitamin K has helped
to improve the memory functions in elderly patients. Recent report
shows that vitamin K2 (menaquione-4) possesses potent antiox-
idative properties, and was found to significantly inhibit
rotenone-induced p38 activation, ROS production and caspase-1
activity and subsequently, restored mitochondrial membrane
potential, showing its potential in the treatment of
neuroinflammation-induced PD [263]. Similarly, vitamin K2 was
found effective to modulate bax and caspase-3 activation in PC12
mouse neuroblastoma cells, protecting it from 6-OHDA induced
apoptosis [264]. Notably, one recent report has shown that low
levels of vitamin K2 in PD patients are associated with dysregu-
lated inflammatory responses and cascade coagulation signals
[265]. Deficiency of vitamin B was also found to be associated with
neurological disorders like beriberi, and polyneuropathy [266].
Similarly, folate deficiency was found to be associated with cogni-
tive impairment and progressive dementia in older women [267].
Also, high intake of B6, B9 and B12 decreases the rate of atrophy
in the brain region linked with the cognitive decline in AD [268].
Further, more constructive studies will be required to prove the
potential link of gut microbiota produced vitamins in
neuroprotection.
Antioxidative and anti-inflammatory effects of probiotics

Free radicals in the form of ROS are byproducts of normal cellu-
lar metabolic processes. Free radicals are potentially able to dam-
age the genetic material, enzymes inactivation, depolymerization
of complex carbohydrates and lipid peroxidation. This vandaliza-
tion of intracellular molecules leads to the cell death. To balance
the free radicals, the body have specific antioxidants such as glu-
tathione [269]. Some products also started to flow in pharmaceuti-
cal markets to tackle oxidative stress such as ferulic acid (FA) due
to its antioxidative and anti-inflammatory properties. It helps to
proliferate neuronal stem cells by enhancing the production of
BDNF and nerve growth factor (NGF) and some neuropeptides hav-
ing anti-inflammatory properties [270,271]. In 2017, Westfall et al.
reported that FA is also produced by probiotic bacteria such as Lac-
tobacillus plantarum NCIMB 8826, Lactobacillus fermentum NCIMB
5221 and Bifidum animalis in large quantity by bacterial FA esterase
enzymes [272]. Due to its therapeutic effect, it is gaining attention
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for its use in AD treatment, pre-treatment with FA has been shown
to reduce the Ab fibrils and to treat the neuroinflammation in AD
mice [273]. FA-producing probiotic bacteria inhibits the formation
and aggregation of beta-amyloid fibrils through scavenging ROS.

Other probiotic bacterial protein, sirtuin-1 (SIRT1) protein
deacetylase has been shown to have antioxidant properties. This
protein regulates the genes of antioxidant pathways of host and
has been documented to have neuroprotective effects. Recent
research probed the capability of a formulation of probiotic bacte-
ria named SLAB51 (Streptococcus thermophilus, Lactobacillus aci-
dophilus, L. plantarum, L. paracasei, L. delbrueckii subsp. bulgaricus,
L. brevis, Bifidobacterium longum, B. breve, B. infantis) to relieve
oxidative stress and discovered the molecular mechanism of its
effects [274]. In the treated transgenic 3xTg-AD-mice, the expres-
sion and activity of SIRT1 protein in the brain were observed to
be retrieved and the formation of Ab peptide was shown decreased.
However, in untreated AD mice, the expression of SIRT1 was found
to be substantially decreased. Moreover, the enhanced activity of
SIRT1 reduces the p53 protein acetylation and improves the sur-
vival of stressed cells by repressing apoptotic pathways. Other
studies also showed that probiotic supplements activate the SIRT1
pathway and provoke antioxidative effects. SLAB51 also enhances
the activity of GPx and catalase antioxidant enzymes to alleviate
oxidative stress-causing impairments. Similar findings were also
observed in humans. The concentration of SIRT1 in the brains of
AD patients was found significantly reduced which is closely asso-
ciated with the accumulation of amyloid-b and tau in the cerebral
cortex of persons with AD [275]. An improved level of SIRT1 has
been reported in a human study supplemented with Lactobacillus
casei 01, a probiotic strain [276].

There is a very fragile relationship between gut microbiota and
host immune cells. Immune cells are specialized to peculiarly differ-
entiate the host friendly bacteria from pathogenic bacteria. If this
relationship hurts, it can lead to unnecessary immune responses,
prompting chronic inflammation [277]. This differentiation is
started by intestinal epithelial cells who are responsible for produc-
ing the educated macrophage phenotype based on bacterial cell
Table 2
Overview of currently active databases related to neurological data.

Database Web address

PDGene http://www.pdgene.org/
MDSGene http://www.mdsgene.org/
Alzforum https://www.alzforum.org/mutations
AlzGene http://www.alzgene.org/
Neuroinformatics Database (NiDB) https://www.nitrc.org/projects/nidb/
Neuroscience Information Framework

(NIF)
https://neuinfo.org/

BrainMaps http://brainmaps.org/
Hippocampome Portal http://www.hippocampome.org/php/

index.php
NeuroElectro https://neuroelectro.org/
NeuroMorpho http://neuromorpho.org/index.jsp
NeuronDB https://senselab.med.yale.edu/NeuronDB/

Collaborative Research in
Computational
Neuroscience (CRCNS)

http://crcns.org/

NeuroImaging Tools and Resources
Collaboratory (NITRC)

https://www.nitrc.org/

BigBrain https://bigbrainproject.org/
Brain Transcriptome database (BrainTx) http://www.cdtdb.brain.riken.jp
Marmoset Gene Atlas https://gene-atlas.brainminds.riken.jp/
Allen Brain Map https://portal.brain-map.org/

BrainCloud https://www.libd.org/brain-cloud/
M2IA http://m2ia.met-bioinformatics.cn/
Microbiota-Active Substance

Interaction Database
(MASI)

http://www.aiddlab.com/MASI/
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surface antigens such as LPS, peptidoglycan and flagellin. When
epithelial cells becomevulnerable to pathogenic attack, the antigens
translocate into vasculature and in response, proinflammatory
cytokines such as IL (interleukin)-1, IL- 6, and tumor necrosis
factor-alpha (TNF-a) are produced, which leads to septic shock
and inflammation in the gut and brain. Some bacterial toxins can
also cross the BBB [269,278]. To gaze at the role of microbiota in
amyloidosis, an investigation was conducted through assessing
thepro- (CXCL2, CXCL10, IL-1b, IL-6, IL-18, IL-8, inflammasomecom-
plex NLRP3, TNF-a) and anti-inflammatory (IL-4, IL-10, IL-13) cyto-
kine activity of several gut microbiota taxa in cognitively impaired
patients and it was observed that the number of Escherichia/Shigella
increases and Eubacterium rectale decreases significantly correlated
with changes in concentrationof pro- andanti-inflammatory cytoki-
nes in cognitively impaired and amyloid positive patients. In con-
cert, an increased level of IL-6, CXCL2, NLRP3, and IL-1b and a
decreased level of IL-10was observed inADpatients. This study sug-
gests that gut microbiota could initiate, worsen or alleviate periph-
eral inflammation in neurological diseases [279].
In silico strategies to advance the gut-brain research

With the advancement of technology, knowledge about the
brain is increasing exponentially. The neuroscientists have gener-
ated plenty of data from molecular biology, molecular genetics,
brain imaging, and other new technologies, and have a significant
interest in sharing the neuroscience data for various analysis.
Neuroimaging is also very helpful in predicting and detecting
NDDs and mental disorders. In the interest of neuroscience data
collection and analysis, various bioinformatics tools are being
developed for the further development of devices based on brain
functions. To date, researchers have a rudimentary knowledge of
molecular pathways involved in neurodegeneration due to various
stress conditions. The integrated databases will be helpful to col-
lect the different types of data related to neurodegeneration dis-
eases from publicly available sources (Table 2).
Data type Reference(s)

Meta-analysis of genome-wide association studies (GWAS) [304]
Genetic mutations, movement disorder genes related to PD [305]
Repository of variants in genes linked to AD [306]
Systematic meta-analyses of AD [307]
Imaging [308]
Metadata (imaging, genes, omics, function, grants, protocols
etc.)

[309]

Brain structure and function [310]
Morphology, molecular marker, membrane biophysics and
synaptic physiology

[311]

Electrophysiological properties [312]
Neuromorphology and metadata [313]
Voltage gated conductances, neurotransmitter receptors, and
neurotransmitter substances

[313]

Electrophysiology and behavioral data [314]

Neuroimaging, imaging genomics software tools, data, and
computational resources

[315]

Ultrahigh-Resolution 3D Human Brain Model [316]
Gene expression [317]
Gene expression [318]
Metadata (gene expression, imaging
toolkits etc.)

[319]

Gene expression [320]
Microbiome and metabolome integrative analysis [283]
Effect of bioactive compounds on microbiota and vice versa [284]

http://www.pdgene.org/
http://www.mdsgene.org/
https://www.alzforum.org/mutations
http://www.alzgene.org/
https://www.nitrc.org/projects/nidb/
https://neuinfo.org/
http://brainmaps.org/
http://www.hippocampome.org/php/index.php
http://www.hippocampome.org/php/index.php
https://neuroelectro.org/
http://neuromorpho.org/index.jsp
https://senselab.med.yale.edu/NeuronDB/
http://crcns.org/
https://www.nitrc.org/
https://bigbrainproject.org/
http://www.cdtdb.brain.riken.jp
https://gene-atlas.brainminds.riken.jp/
https://portal.brain-map.org/
https://www.libd.org/brain-cloud/
http://m2ia.met-bioinformatics.cn/
http://www.aiddlab.com/MASI/
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The comprehensive knowledge of microbiome and their impor-
tance in human health is increasing at a fast pace with the aggran-
dizement of high throughput technologies. Microbiota interacts
with the host metabolites and converts them to secondary metabo-
lites. Gut microbiota also produces their metabolites which play
very important role in human health. Comprehending the interac-
tion of metabolites and gut microbiota, it is important to know the
function of microbiota in health and disease status and to develop
natural therapies [280]. In the recent past, it has been proved that
gut bacteria can alter CNS physiology and dysbiosis could be a
potential factor in neuroinflammation [281]. In 2019, Lu and Claud
reported that initial colonization and microbiota development
affect brain development in preterm infants [282]. To manage
and facilitate this exponentially increasing information, microbiota
databases are being developed for in-depth understanding of the
role of microbiota in human health. To establish the correlation
between microbiota and metabolites, new pipelines are being
developed such as M2IA, an automated microbiome and metabo-
lome integrative analysis pipeline [283]. Other microbiota data-
bases provide useful information about disease-associated
microbes, modulation of drugs by microbiota, the effect of diet
on gut microbes. To distribute the knowledge about the alteration
of active substances such as therapeutic drugs, dietary compo-
nents, herbal products, probiotics and environmental chemicals
by microbiota and alteration of microbiota by active substances,
Microbiota–Active Substance Interactions (MASI) database is
developed [284]. These databases will be very helpful to establish
the correlation between bacterial metabolites and neuronal health
and pathogenesis. It has been reported that in clinical trials, the
outcome of L-dopa treatment for PD varies between the recruiting
subjects. This variation is because of their microbiota. L-dopa is
metabolized by Tyrosine decarboxylase (TDC) and dopamine dehy-
droxylase (Dadh) of different gut bacterial species namely Entero-
coccus faecalis and Eggerthella lenta A2 [285]. For the inactivation
of bacterial L-dopa decarboxylase, a drug, (S)-a-fluoromethyltyro
sine (AFMT) was discovered. The combination of L-dopa and AFMT
is being used for Parkinson’s treatment. Zhuang et al. showed that
gut microbiota is altered in patients with AD compared to healthy
individuals at taxonomic levels, such as Bacteroides, Actinobacte-
ria, Ruminococcus, Lachnospiraceae, and Selenomonadales [286].
Metagenomic data/16S RNA sequencing data support firm associa-
tion between dysbiosis and AD. Bacterial products such as LPS and
SCFAs are associated with amyloid pathology [287]. The main
objective of the development of these databases is to organize data
in a set of structured records that can be helpful to retrieve the
information for different analysis by analyst to provide the solu-
tions to different unsolved mysteries related to neurodegeneration.
Conclusion

Interconnection of gut microbiota and brain has led to transfor-
mative advances in neuroscience research. To date, most of the
studies found are related to gut bacterial neuroscience research,
but the gut microbiome is vast and requires the attention of scien-
tists to identify and characterize the role of gut micro-organisms
and their communities, affecting gut-brain signaling routes. There
is a need for additional understanding of pathways employed by
gut microbiota in mediating communication between the gut and
brain in the process of neurodegeneration and neuroprotection,
which may open the way to new hypotheses in pathology and
treatment of the disease. New treatment regimens like fecal micro-
bial transfer and probiotics, though have helped in improving brain
health to some extent, but lacking empiric pieces of evidence in
commercial probiotic strains provokes the need to study particular
probiotics for the treatment of particular NDDs. Further, the
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growing potential of in-silico strategies will help to gain a deep
understanding of microbial effector molecules in neurodegenera-
tion and neuroprotection, but unfortunately, these studies are very
limited. Bioinformatic tools are the need of the hour, which could
potentiate the designing of such drugs that can target the specific
bacterial enzymes mediating the production of harmful metabo-
lites. Neuroprotective and neurodegenerative roles of gut microbial
metabolites are continued to be uncovered, providing opportuni-
ties to develop novel therapeutic modalities.
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