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Abstract: Background: Tumor-associated macrophages (TAMs) are key players in the
colorectal cancer (CRC) tumor microenvironment (TME), representing the most abundant
immune cells within it. The interplay between the intestinal microbiota, macrophages, and
cancer cells significantly impacts tumor progression by driving macrophage polarization.
Particularly, the polarization into the pro-tumoral M2-like TAM phenotype promotes the
extracellular matrix remodeling, cancer cell proliferation, metastasis, immune suppres-
sion, and therapy resistance. Probiotic metabolites can disrupt this crosstalk, possibly
reverting the TAM polarization toward a pro-inflammatory anti-tumoral phenotype, thus
potentially benefiting the intestinal mucosa and opposing CRC progression. Previously,
we showed that Lactiplantibacillus plantarum OC01 metabolites counter interleukin (IL)-6-
induced CRC proliferation and migration. Methods: Here, we explore how probiotics
affect CRC secretome and how this influences TAM polarization, which then impacts CRC
malignancy. Results: The conditioning medium (CM) from CRC cells indeed promoted
the polarization of macrophage toward the M2-like phenotype, whereas the CM from CRC
pre-treated with L. plantarum OC01 metabolites induced a pro-inflammatory macrophage
phenotype, characterized by NLRP3 inflammasome activation and reactive oxygen species
(ROS) production, and by decreased expression of the M2 phenotype markers CD206 and
CD163. Consistently, the expression of tumor growth factor (TGF)-f3, a promoter of M2
macrophage polarization, was reduced in CRC cells treated with L. plantarum OCO01. The
pro-inflammatory macrophages inhibited CRC proliferation and migration. Conclusions:
Overall, our study highlights the potential of metabolites from L. plantarum OCO1 to repro-
gram the metabolism in cancer cells and thus reshape the TME by shifting TAMs toward a
more inflammatory and anti-tumoral phenotype, emphasizing the promise of probiotics in
advancing novel therapeutic approaches for CRC.

Keywords: macrophage; probiotics; microbiota; inflammasome; tumor microenvironment

1. Introduction

Colorectal cancer (CRC) accounts for more than 900,000 deaths annually, making
it the third most common cancer and the second leading cause of cancer-related deaths
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worldwide [1]. Its rising incidence has been linked to genetic and epigenetic factors, as
well as dietary habits and sedentary lifestyles, particularly in developing countries [1].
In addition to these factors, many studies have demonstrated the significant role of the
gut microbiota in CRC development and treatment outcomes [2,3]. Dysbiosis of the gut
microbiota contributes to CRC through various mechanisms, including the secretion of
microbial toxins, altered metabolites production, hormonal dysregulation, chronic immune
activation, and persistent inflammation [4-6].

Given its crucial involvement in CRC pathogenesis, the gut microbiota is now recog-
nized as a key component of the tumor microenvironment (TME) [7,8], which also includes
stromal cells, immune cells, and non-cellular components such as extracellular matrix
(ECM), cytokines, chemokines, and growth factors that support tumor growth [9]. Among
immune cells, intestinal macrophages are the most abundant tumor-infiltrating immune
cells in CRC tissues. These cells regulate the innate immune response, maintain tissue
homeostasis, and modulate inflammation [10].

Within the TME, macrophages differentiate into tumor-associated macrophages
(TAMs), exhibiting phenotypic plasticity [11]. TAMs can polarize into either an M1 or
M2 phenotype, driven by signals released by cancer cells [12]. M1-like phenotype ex-
hibits pro-inflammatory, immunostimulatory, and anti-tumorigenic properties through the
release of inflammatory cytokines, such as interleukin (IL)-1§3, IL-6, and tumor necrosis
factor (TNF)-«. In contrast, the M2-like phenotype is characterized by immunosuppressive
and pro-tumorigenic properties due to the secretion of IL-10, transforming growth factor
(TGF)-B, and proteolytic enzymes like MMP-9 that contribute to ECM remodeling and
facilitate cancer invasion and metastasis [11,13].

The polarization toward the M1-like phenotype is induced by microbial stimuli such as
exogenous lipopolysaccharide (LPS) and other pro-inflammatory signals [14,15], whereas
the M2-like phenotype can be divided into four distinct subtypes, namely M2a, M2b, M2c,
and M2d, depending on the stimuli involved. M2a is induced by IL-4 or IL-13, M2b by
immune complexes in combination with IL-13 or LPS, M2c by IL-10 and TGF-3, and M2d by
toll-like receptors (TLR) or IL-6 signaling [16]. These subtypes can be identified by specific
surface markers, with M1 macrophage expressing CD80 and CD86 on the membrane and
M2c macrophages exhibiting elevated CD206 and CD163 expression [17].

M1 and M2 macrophages differ significantly in their immunological roles. M1
macrophages are activated through the NLRP3 inflammasome [18-20], which may be
triggered by the production of reactive oxygen species (ROS) [21]). This activation leads
to the release of pro-inflammatory cytokines IL-1$ and IL-18 [22]. Furthermore, ROS
can activate the NF-kB signaling pathway, enhancing the transcription of additional pro-
inflammatory cytokines, playing a crucial role in inducing inflammatory responses and
tumor cell eradication [17]. In contrast, M2 macrophages are characterized by the release of
anti-inflammatory cytokines, having an immunosuppressive role and promoting tumor
growth, angiogenesis, and metastasis.

During cancer progression, M1 and M2 macrophage phenotypes are not fixed but
change over time. In the early stages of tumor development, M1 macrophages predominate
and actively work to destroy cancer cells. As the tumor progresses, macrophages gradually
adopt the M2 phenotype, which supports immune suppression and tumor growth [23].
Dysbiosis of the gut microbiota plays a key role in this process by activating macrophages
toward M2-like phenotype, creating an immunosuppressive TME that facilitates tumor
progression and metastasis [24].

Probiotics represent a promising new approach for managing CRC. By competing
with pathogenic bacteria for space and nutrients and producing antibacterial substances,
probiotics help restore a balanced gut microbiota (eubiosis). This balance exerts anti-
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tumor activity by counteracting carcinogenic molecules, promoting apoptosis and cellular
differentiation, and regulating immune and inflammatory responses [25,26].

The objective of our study is to integrate our knowledge of the beneficial effects
of probiotic metabolites into CRC management, focusing on the changes they induce in
the TME. We hypothesize that metabolites produced by the gut microbiota may have
the potential to disrupt the crosstalk between cancer and TAMs, whose polarization into
M2-like phenotype contributes to cancer progression.

In our previous research, we investigated the effects of the supernatant from the
probiotic strain Lactiplantibacillus plantarum OCO01 on oncogenic pathways, which are com-
monly targeted in cancer treatment. Our findings revealed that metabolites derived from
L. plantarum had a negative impact on the activation of ERK and S6, key pathways involved
in cancer development. Furthermore, these probiotic-derived metabolites were able to
counteract IL-6-induced cell proliferation and migration, exerting a beneficial effect on
CRC cells [27].

Here, we demonstrate that Lactiplantibacillus plantarum OCO01 metabolites modulate
the TME by influencing the crosstalk between cancer cells and macrophage. Conditioning
medium (CM) from probiotic-treated CRC cells induced in macrophage a shift toward a
more pro-inflammatory phenotype characterized by activation of the NLRP3 inflammasome
and increased ROS production. This shift was reflected in the decreased levels of TGF-f3, a
key cytokine involved in M2 polarization, and in probiotic-treated cancer cells, alongside
not significant changes in pro-inflammatory cytokines such as IL-6, IL-13, and TNF-«. The
more inflammatory phenotype was further confirmed by a reduction in the expression
of M2-associated markers CD206 and CD163 in PMA-differentiated THP-1 macrophages
exposed to CM from probiotic-treated CRC cells, compared to those exposed to CM from
untreated cells. In co-culture experiments, macrophages differentiated with CM from
probiotic-treated cancer cells were able to decrease cancer cell proliferation and migration,
whereas those differentiated with CM from untreated cells promoted these processes,
highlighting that the shift toward a more pro-inflammatory macrophage phenotype is
a feasible goal to combat the cancer. These findings suggest that probiotics alter the
TME by modulating macrophage behavior and inflammatory cytokine profiles, ultimately
influencing cancer cell progression.

By elucidating the impact of microbiota metabolites on TAMs and their role in modulat-
ing the pro-tumoral phenotype, our findings provide the pre-clinical rationale for probiotic
therapeutic application, targeting both the gut microbiota and immune components of the
TME. Restoring a healthy microbiota through probiotics is expected to improve the overall
health status of CRC patients and potentially mitigate the risks of secondary metastasis
and relapse.

2. Materials and Methods
2.1. Cell Culture and Treatment

The human THP-1 monocyte cell line (TIB-202™), isolated from the peripheral blood
of an acute monocytic leukemia patient, and the human CRC cell lines HCT116 (CCL-
247™) and HT29 (CCL-227™), each characterized by distinct genetic backgrounds and
tumor site origins, were obtained from the American Type Culture Collection (ATCC).
All cell lines were cultured in RPMI-1640 medium (R8758; Sigma-Aldrich, St. Louis,
MO, USA) supplemented with 10% heat-inactivated fetal bovine serum (FBS, ECS0180L;
Euroclone, Milan, Italy), 1% glutamine (G7513; Sigma-Aldrich, St. Louis, MO, USA), and
1% penicillin/streptomycin (PES, P0781; Sigma-Aldrich, St. Louis, MO, USA). The cells
were maintained under standard culture conditions (37 °C, 95% air, 5% CO5).
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THP-1 monocytes were treated with 20 ng/mL Phorbol-12-Myristate-13-Acetate (PMA,
P8139; Sigma-Aldrich, St. Louis, MO, USA) and dissolved in DMSO to induce their
differentiation into macrophages.

2.2. Probiotic Formulation

The supernatant from Lactiplantibacillus plantarum OCO01 (NCIMB 30624), sourced
from the Probiotical SpA collection, was prepared by culturing the bacteria as previously
described [27].

For stimulation experiments, eukaryotic cells were exposed to the cell-free supernatant
of OCO1 after filtering the bacteria culture broth through a 0.2 pm syringe filter. This
supernatant contains all catabolic and anabolic products released by 10 billion viable
probiotic cells after overnight overgrowth.

CRC cultures were supplemented with 10 puL of OCO01 cell-free supernatant per 1 mL
of final culture media volume.

2.3. Collection of the Colorectal Cancer Cell Conditioning Medium (CRC Cell CM)

CRC cells (HCT116 and HT29) were cultured in 75 cm? flasks and treated with
or without Lactiplantibacillus plantarum OCO01 supernatant for 48 h, and then the CM
was collected. CRC cell CM was centrifuged at 2000 rpm for 5 min to remove cell de-
bris, diluted 50:50 (CRC cell CM: RPMI-1640), and then stored at —20 °C until use, as
previously described [28].

2.4. Antibodies

The following primary antibodies (at the dilution indicated) were used for either
immunofluorescence or Western blotting: mouse anti-CD68 (1:500, cod. 14-0688-80; Life
Technologies, Paisley, UK); rabbit anti-NLRP3 (1:500, cod. MA5-32255; Life Technologies,
Paisley, UK); rabbit anti-CD206 (1:500, cod. MA5-32498; Life Technologies, Paisley, UK);
mouse anti-CD163 (1:500, cod. ab156769; abcam, Cambridge, UK); mouse anti-p21 (1:100,
cod. B1313; Santa Cruz, Biotechnology, Dallas, TX, USA); rabbit anti-Ki67 (1:100, cod.
HPA001164; Sigma-Aldrich, St. Louis, MO, USA); rabbit anti-GAPDH (1:1000, cod. G9545;
Sigma-Aldrich, St. Louis, MO, USA); and mouse anti-{3-actin (1:2000, cod. A5441; Sigma-
Aldrich, St. Louis, MO, USA).

2.5. Western Blotting Analysis

THP-1 cells were seeded (50,000 cells/cm?) in p35 Petri dishes and treated as indicated.
Cell homogenates were prepared by freeze-thawing and ultrasonication in RIPA lysis buffer
containing protease inhibitors. Equal protein amounts (30 ug) were separated by SDS-PAGE
and transferred to PVDF membranes. Membranes were incubated overnight with primary
antibodies at 4°C, followed by incubation with secondary HRP-conjugated antibodies
for 1 h at room temperature, as detailed in [29]. Bands were detected using Enhanced
Chemiluminescence reagents (cod. NEL105001EA; Perkin Elmer, Waltham, MA, USA) and
analyzed using a VersaDOC Imaging System (BioRad, Hercules, CA, USA) with Quantity
One software (v.4.5). Band intensity was quantified by densitometry using Quantity One
software (v.4.5), and normalization was performed by re-probing the membranes with
GAPDH or B-actin. Data were reproduced at least three times.

2.6. Immunofluorescence Assay

Cells were seeded onto sterile coverslips at a density of 30,000 (cancer cells) — 50,000 (THP-1)
cells/cm? and treated as reported. At the end of the experiment, the coverslips were fixed in
ice-cold methanol (cancer cells) or 4% paraformaldehyde (THP-1) and incubated overnight
at 4 °C with specific primary antibodies as previously described [29]. The following day,
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coverslips were incubated for 1 h at room temperature with secondary antibodies (diluted
in 0.1% Triton-PBS + 10% FBS). AlexaFluor488-conjugated goat-anti rabbit IgG (1:000, cod.
A32731, Invitrogen, Paisley, UK) or AlexaFluor555-conjugated goat-anti mouse IgG (1:1000,
cod. A32727, Invitrogen, Paisley, UK) was used, as appropriate. Nuclei were stained with
UV fluorescent dye DAPI (4,6-diamidino-2-phenylindole). Coverslips were mounted onto
glass using SlowFade reagent (cod. S36936; Life Technologies, Paisley, UK) and imaged
with a fluorescence microscope (Leica Microsystems DMI6000; Wetzlar, Germany).

2.7. Phagocytosis Study

THP-1 cells were plated onto sterile coverslips at a density of 50,000 cells/cm? and
treated as described. To evaluate phagocytic activity, cells were first incubated with 100 nM
LysoTracker™ Red probe (cod. L7528, Life Technologies, Paisley, UK) at 37 °C for 10 min,
followed by incubation with 25 pg/mL of 30 nm carboxy-functionalized nanoparticles
(COOH-NPs), emitting green fluorescence (cod. L5155, Sigma-Aldrich, St. Louis, MO,
USA), at 37 °C for 10 min [30]. Coverslips were washed, mounted, and immediately imaged
using a fluorescence microscope (Leica Microsystems DMI6000, Wetzlar, Germany).

2.8. Anion Superoxide Production by MitoSOX™ Fluorescence Assay

THP-1 cells were seeded onto coverslips at a density of 50,000 cells/ cm? and treated
as described. Mitochondrial anion superoxide was detected in living cells using 5 uM
MitoSOX™ Red (cod. M36008; Life Technologies, Paisley, UK) as previously described [31].
Coverslips were washed three times with PBS, mounted on glass slides, and images were
immediately acquired using a fluorescence microscope (Leica Microsystems DMI6000,
Wetzlar, Germany).

2.9. RNA Isolation and Quantitative PCR

HCT116 and HT29 cells were plated in p60 Petri dishes at a density of 50,000 cells/cm?
and treated as described. The total RNA was extracted from the cells using TRIzol reagent
(cod. T9424, Sigma-Aldrich, St. Louis, MO, USA). The mRNA was then reverse-transcribed
into complementary DNA (cDNA) using the RevertAid First Strand cDNA Synthesis Kit
(cod. K1622, Thermo-Scientific, Waltham, MA, USA). The cDNA was then amplified by
PCR in the presence of recombinant Taq DNA polymerase (cod. 10342-020, Invitrogen,
Waltham, MA, USA) and primers designed to anneal to the 5'- and 3’-untranslated regions
(UTRs). The PCR products ware analyzed by agarose gel electrophoresis.

The sequences of the primers used were as follows (Table 1):

Table 1. Overview of the cytokines analyzed, including their amplicon lengths and the sequences of
the forward and reverse primers used for amplification.

Primer Amplicon Length F;rj/:a;/d I;/e\-lsrss/e
IL-8 455 bp GGACAAGAGCCAGGAAGAAA CCTACAACAGACCCACACAATA
IL-1B 567 bp ATGACCTGAGCACCTTCTTTC TCTCTGGGTACAGCTCTCTTTA
IL-10 677 bp GAACCAAGACCCAGACATCAA CCAAGCCCAGAGACAAGATAAA
IL-6 427 bp CAGCTATGAACTCCTTCTCCAC CTGGCTTGTTCCTCACTACTC
IL-18 505 bp CCAAGGAAATCGGCCTCTATT GTCTTGAACACCTGACCTCTG
TNF-a 828 bp ATCTACTCCCAGGTCCTCTTC CCCGGTCTCCCAAATAAATACA
TGF-p 662 bp GTGGAAACCCACAACGAAATC GTGTCCAGGCTCCAAATGTA
-actin 719 bp GATCAAGATCATTGCTCCTCCTGAGCGCA  GTCTCAAGTCAGTGTACAGGTAAGCCCT
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2.10. Macrophages and Colorectal Cancer Cell Lines Co-Culture System Assay

To partially recreate the in vivo interaction between cancer and TAMs, a non-contact
co-culture system (Transwell® Permeable Supports, Polycarbonate Membrane, 12 mm
Insert, 0.4 um pore size; cod. 3413, Corning Incorporated Costar, NY, USA) was used to
assess the proliferative capacity of cancer cells exposed to the presence of macrophages.
THP-1 cells were plated at a density of 30,000 cells/cm? within the insert, differentiated
into macrophages as reported, and subsequently transferred to a 24-well plate with CRC
cells pre-seeded on coverslips. After 24 h of co-culture, the coverslips with cancer cells
were washed with PBS, fixed with ice-cold methanol, and permeabilized with 0.2% Triton
X-100 in PBS. The cells were then incubated with primary antibodies and processed for
immunofluorescence staining as described above.

To assess the migration capability of cancer cells in co-culture with THP-1-differentiated
macrophages, THP-1 cells were seeded into a 24-well plate at a density of 50,000 cells/cm?
and differentiated into macrophages as described. Cancer cells were seeded in p35 Petri
dishes at a density of 40,000 cells/cm? and cultured until they reached 80% confluence.
After 48 h of culture, the cancer cells were trypsinized, collected, and counted. An aliquot
of 50,000 cells per experimental condition was resuspended in serum-free medium and
plated into uncoated inserts (Transwell® Permeable Supports, Polycarbonate Membrane;
6.5 mm Insert; 8.0 um pore size Polycarbonate Membrane; cod. 3422, Corning Incorporated
Costar, NY, USA). Each insert was placed onto THP-1-differentiated macrophages in a
24-well plate containing complete RPMI, and the plate was placed in the incubator. After
24 h of incubation, a fraction of each cell population had migrated through the porous
membrane to the underside of the inserts. The migrated cells were washed in PBS, fixed in
methanol for 30 min, washed again in PBS, and then stained for 1 h with eosin-hematoxylin
solution (cod. 05-M06002; Bio-Optica, Milan, Italy). The inserts were washed in PBS,
left to dry for at least 1 day, then cut and mounted onto slides using SlowFade reagent
(cod. S36936; Life Technologies, Paisley, UK). Photographs were taken from random fields
using an Axioscan 7 microscope (magnification 20X; ZEISS, Oberkochen, Germany). The
amount of migrating cells (reflected by staining intensity) was quantified using Image] soft-
ware. Data are expressed as the average number of migrated cells from different fields per
each condition.

2.11. Statistical Analysis

All data refer to at least three separate experiments. Data in histograms are shown
as average + S.D. Statistical analysis was performed with GraphPad Prism 5.0 soft-
ware. Bonferroni’s multiple comparison test after one-way ANOVA analysis (unpaired,
two-tailed) and t student test were employed. Significance was considered as follows:
% p < 0.0001; *** p < 0.001; ** p < 0.01; * p < 0.05.

3. Results
3.1. Differentiation of THP-1 into Macrophage-like Phenotype

The human monocyte cell line THP-1, commonly used for studies on macrophage
differentiation, was exposed or not to 20 ng/mL of Phorbol-12-Myristate-13-Acetate (PMA)
to stimulate differentiation into macrophages (Figure 1A). Following 48 h of incubation with
PMA and a subsequent 24 h recovery in normal media, treated cells exhibited increased
adherence to the culture plate, a key indicator of macrophage differentiation, along with
a stellate and polygonal morphology and extended pseudopodia. In contrast, control
cells retained a rounded shape and remained in suspension (Figure 1B). This phenotypic
transition was confirmed by monitoring the expression of the pan-macrophage or M0-
like phenotype marker CD68 through Western blotting and immunofluorescence. The
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significant increased expression of CD68 in PMA-treated cells confirmed the activation of
THP-1 monocytes into M0-like phenotype macrophages (Figure 1C,D).

CDé68, a transmembrane glycoprotein primarily localized in lysosomes, plays a crucial
role in the internalization and degradation of extracellular particles, facilitating phagocyto-
sis. Its upregulation is associated with enhanced macrophage activity [32]. To assess the
phagocytic capacity of M0 macrophages, cells were incubated with fluorescence-tagged
nanoparticles (NPs), and their uptake into lysosomes was visualized using a red Lyso-
Tracker™ probe. Co-localization of NPs and lysosomes (yellow signal) indicated successful
phagocytosis of NPs by macrophages. PMA-treated cells showed increased co-localization,
suggesting enhanced phagocytic activity, whereas in untreated cells, NP uptake into lyso-

somes was completely absent, confirming the lack of phagocytic function in the monocyte
cells (Figure 1E).
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Figure 1. Cont.
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Figure 1. THP-1 cell differentiation into MO macrophage. (A) Schematic representation of experimen-
tal design. THP-1 cells were plated and treated with or without 20 ng/mL of PMA for 48 h, followed
by a one-day recovery in normal media (NM) (created with BioRender). (B) Cell morphology images
of THP-1 were obtained using phase-contrast microscopy (scale bar = 100 um, magnification = 20x).
(C) Cell homogenates were analyzed by Western blotting for the expression of the M0 macrophage
marker CD68. The filter was re-probed with GAPDH as a loading control. The blots are representative
of three experiments with reproducible results. Densitometric analysis, including standard deviation,
is provided (significance was considered as ** p < 0.01). (D) THP-1 cells were plated on coverslips and
treated as described. At the end of the treatment, cells were stained for the M0 macrophage marker
CDe68 (red) and imaged using fluorescence microscopy (scale bar = 25 um, magnification = 63 x).
Nuclei were stained with DAPI. Representative images for each condition are shown. (E) THP-1
cells were plated onto coverslips and treated as described. At the end of the treatment, cells were
incubated with Lysotracker™ probe for 10 min at 37 °C and then exposed to 25 ug/mL COOH-NPs
for an additional 10 min to evaluate their internalization into lysosomes (yellow signal). Images were
acquired using fluorescence microscopy (scale bar = 25 pm, magnification = 63 x). Representative
images for each condition are shown.
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3.2. Conditioning Medium from Lactiplantibacillus plantarum OCO01-Treated Colorectal Cancer
Cells Promotes Macrophage Inflammatory Phenotypes via NLRP3 Activation

Macrophages within the tumor microenvironment (TME) are strongly influenced by
cytokines, chemokines, and growth factors, particularly secreted by cancer cells, driving
their polarization into either a classically activated M1-like phenotype or an alternatively
activated M2-like phenotypes. These tumor-associated macrophages (TAMs) play a critical
role in colorectal cancer (CRC) progression and metastasis [33].

Given the pivotal role of TAMs in mediating the inflammatory response within the
TME, we investigated inflammasome activation, focusing on NLRP3 as the central com-
ponent in inflammasome-driven inflammation [34]. M1 macrophages, associated with a
pro-inflammatory and anti-tumor phenotype, typically exhibit higher levels of NLRP3 ac-
tivity, while M2 macrophages are characterized by reduced NLRP3 activity, consistent with
their anti-inflammatory profile and tumor-promoting effects [19]. Notably, mitochondrial
reactive oxygen species (ROS) have been identified as an inducer of NLRP3 activation,
linking oxidative stress to inflammasome activation and the inflammatory response [21].

To investigate the effect of CRC cells secretome on NLRP3 activation in macrophages,
differentiated MO macrophages were exposed to the conditioning medium (CM) from
two CRC cell lines, HT29 and HCT116, which have different genetic backgrounds. The
cancer cells were pre-treated for 48 h with or without Lactiplantibacillus plantarum OCO01
supernatant (LpOCO01-SN) to determine whether this treatment alters their secretion that
would then influence the inflammatory status of macrophages (Figure 2A,B).

Macrophages incubated with CM from HCT116 and HT29 cells pre-treated with
LpOCO01 metabolites exhibited elevated NLRP3 expression and increased ROS production.
In contrast, macrophages incubated with CM from untreated cancer cells showed reduced
NLRP3 expression and minimal ROS production (Figure 2C,D). These findings suggest that
macrophages exposed to CM from LpOC01-SN-cured cancer cells may adopt a more inflam-
matory phenotype, potentially indicative of an M1-like profile. Conversely, macrophages
exposed to CM from untreated cancer cells appear to exhibit a less inflammatory status,
potentially aligning with an M2-like profile.

3.3. Lactiplantibacillus plantarum OCO01 Metabolites Reduce the Expression of TGF-f in Colorectal
Cancer Cells

Cytokines in the TME can direct macrophage activation toward an anti-inflammatory,
pro-tumoral phenotype, or toward a pro-inflammatory, anti-tumoral phenotype, thus
influencing the overall immune landscape within the tumor. Cancer cells significantly
contribute to an immune-suppressive, pro-tumoral environment, particularly through the
secretion of cytokines like IL-10, TGF-f3, and colony-stimulating factor-1 (CSF-1). These
molecules help reprogram macrophages to adopt an M2-like phenotype, promoting tumor
progression by suppressing immune surveillance and enhancing tissue remodeling [35-38].
In contrast, cytokines, such as TNF-«, are generally associated with a pro-inflammatory,
tumor-suppressive macrophage phenotype [39], which can enhance the ability of the
immune system to fight against the tumor.

To investigate the mechanism by which LpOC01 modulates CRC cell secretions and,
thereafter, macrophage inflammatory status, we analyzed the cytokine profile of HCT116
and HT29 cells. We specifically analyzed key cytokines such as IL-8, IL-1f3, IL-10, IL-18,
IL-6, TNF-o, and TGF-§3 that are known to play pivotal roles in shaping the TME.

Our results demonstrated that treatment of CRC cells with LpOC01-SN led to a marked
reduction in TGF-f expression, particularly in HT29 cells. Additionally, a slight though
not significant change in IL-1f3, IL-6, and TNF-« levels was observed in both HCT116 and
HT29 cells (Figure 3).



Biomedicines 2025, 13, 339 10 of 20

A
+/- 0CO1
s
@ 48h CRCC CM
Kj—’ +/- 0CO1
CRC cells
B
o]
CRCC CM
/ +/- 0C01
. 48h 24h  Nau ax
pMATNM ST ¢ 48h
e e ——
S;’;?:; i MO Macrophages
PMA 20 ng/ml
C
THP-1 Macrophages THP-1 Macrophages
O)
v
O N &
L é«’b S
& & °F
C kDa
NLRP3
GAPDH
THP-1 Macrophages THP-1 Macrophages
NLRP3/B-Actin NLRP3/GAPDH
20 2.0 i
i g 15
g g 1.0 J_
% ‘% 0.5-
0.0-
ocP\ & :}’j‘ _o"&
‘@
&
D
THP-1 Macrophages
ctrl CM HCT116 CM HCT116+0C01 CM HT29 CM HT29+0C01

THP-1 Macrophages
MitoSOX

XOSOUW

INT. DEN. (A.U)

FErem

N

R & 9

e
%

& &8

&

& &
.31&

%,

%,

Figure 2. The secretome of the LpOCO01-SN-cured colorectal cancer cell induces NLRP3 activation and
ROS generation in macrophages. (A,B) Schematic representation of experimental design. HCT116
and HT29 cells were plated and treated or not with 10 puL of LpOCO01-SN for 48 h. The treatment
was renewed every 24 h. At the end of the treatment period, the CM was collected and used to
treat the differentiated M0 macrophages for 48 h (created with BioRender). (C) Cell homogenates
were analyzed by Western blotting to assess the expression of NLRP3. The blot is representative of
three experiments with reproducible results. The filter was re-probed with (3-actin or GAPDH as a
loading control. Densitometric analysis, including standard deviation, is provided (significance was
considered as * p < 0.05). (D) THP-1 cells were plated on coverslips and differentiated and treated as
described above. After 48 h of treatment, cells were labeled with MitoSOX™. Coverslips were directly
visualized using a fluorescence microscope (scale bar = 25 um, magnification = 63x). The data
presented are representative of multiple fields for each condition. Graphs report the quantification of
the fluorescence intensity per cell (significance was considered as *** p < 0.0001).
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Figure 3. LpOCO1 cell-free supernatant reduces TGF-3 expression in HCT116 and HT29 cells. Cells
were seeded in Petri dishes and treated with or without 10 puL of LpOC01-SN for 48 h, with medium
and treatment renewed every day. Agarose gel electrophoresis was used to visualize the PCR products
for IL-8, IL-1p3, IL-10, IL-18, IL-6, TNF-«, and TGF-. The cytokine expression profiles shown are
representative of three experiments with reproducible results.

Our results suggest that metabolites from Lactiplantibacillus plantarum OCO01 may
alter the cytokine profile of cancer cells, creating an environment that promotes a more
pro-inflammatory macrophage state, potentially limiting tumor progression.

3.4. Conditioning Medium from Lactiplantibacillus plantarum OCO1-Treated Colorectal Cancer
Cells Reduces the Polarization of Macrophages into the M2-like Phenotype

To further investigate whether the observed changes in inflammasome activation in
macrophages exposed to CM from LpOC01-SN-cured cancer cells were linked to a shift in
macrophage phenotype, we assessed the expression of the M2 markers CD206 and CD163,
known to be associated with a less inflammatory state and pro-tumorigenic activity [40].
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Our results showed that CM from CRC cells supplemented with LpOCO01-SN signifi-
cantly reduced CD206 and CD163 expression, thereby limiting the differentiation of M0
macrophages into an M2-like phenotype. In contrast, macrophages exposed to CM from
untreated CRC cells displayed an increased expression of these markers, indicative of
differentiation into anti-inflammatory M2 macrophages, consistent with reduced inflam-
masome activation. Conversely, the reduction in CD206 and CD163 expression combined
with increased NLRP3 expression and ROS production in macrophages treated with CM
from LpOCO01-SN-cured CRC cells suggests a shift toward a pro-inflammatory macrophage
state (Figure 4).
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Figure 4. CM from LpOCO01-SN-cured CRC cells limits the differentiation into M2 macrophages.
HCT116 and HT29 cells were plated and treated or not with 10 uL of LpOCO01-SN for 48 h. The
treatment was renewed every 24 h. At the end of the treatment period, the CM was collected and used
to treat the differentiated M0 macrophages for 48 h. Cell homogenates were analyzed by Western
blotting to assess the expression of M2 macrophages markers CD206 and CD163. The filter was
re-probed with GAPDH as a loading control. The blot is representative of three experiments with
reproducible results. Densitometric analysis, including standard deviation, is provided (significance
was considered as follows: *** p < 0.001; ** p < 0.01; * p < 0.05).

3.5. Macrophages Reprogrammed by Conditioning Medium from LpOC01-SN-Cured CRC Cells

We have demonstrated that the CM of cancer cells promotes the differentiation of
macrophages toward an M2-like phenotype, associated with anti-inflammatory properties.
In contrast, the CM of cancer cells exposed to LyOC01-SN induces a more inflammatory
macrophage phenotype that does not express M2-like markers.

To investigate how these differentially polarized macrophages impact the behavior of
HCT116 and HT29 cancer cells, a non-contact co-culture system using Transwell inserts
was employed. This system allowed the exchange of soluble factors without direct cell-cell
contact. Differentiated macrophages (M0 macrophages exposed to the CM from HCT116
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or HT29 cells that had been or not exposed to LpOC01-SN for 48 h) were seeded in the
upper compartment of the Transwell system, while cancer cells were plated in the lower
compartment (Figure 5A). After 24 h of co-culture, the proliferation of cancer cells was
analyzed by immunofluorescence assessment of the expression of the proliferative marker
Ki67 and of the cyclin-dependent kinase inhibitor p21waf/Cip1 by. As shown in Figure 5B,
co-culture with M2-like macrophages resulted in increased Ki67 expression and decreased
p2lwaf/Cipl in HCT116 and HT29 cells. In contrast, when cancer cells were co-cultured
with more inflammatory macrophages differentiated with CM from cancer cells pre-cured
with LpOCO01-SN, a decrease in cancer cell proliferation was observed, along with an
increase in p21waf/Cip1l and a reduction in Ki67 expression.
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Figure 5. Cont.
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Figure 5. Macrophages reprogrammed by the conditioning medium from LpOC01-SN-cured CRC
cells reduce the proliferation and migration of HCT116 and HT?29 cells. (A) Schematic representation
of experimental design. THP-1 cells were plated on Transwell inserts (upper chamber) and differ-
entiated into macrophages (48 h with PMA plus 24 h in normal medium and further incubated for
48 h with the CM of CRC cells pre-treated or not with 10 pL of LpOCO01-SN). The inserts were then
transferred into a 24-well plate pre-seeded with CRC cells on coverslips for 24 h (created with BioRender).
(B) Following 24 h of co-culture in normal (complete) medium, the HCT116 and HT29 cells on the
coverslip were processed for immunofluorescence staining of Ki67 (green) and p21 (red). Nuclei were
stained with DAPI. The cells were photographed under fluorescence microscopy (scale bar = 10 um,
magnification = 63x). Representative images for each condition are shown. (C) Schematic repre-
sentation of experimental design. THP-1 cells were plated on the lower chamber and differentiated
into macrophages (48 h with PMA plus 24 h in normal medium and further incubated for 48 h with
the CM of CRC cells pre-treated or not with 10 puL of LpOC01-SN). HCT116 and HT29 cells were
plated into Transwell inserts which were then positioned in a 24-well plate. The upper chamber con-
taining CRC cells was filled with serum-free medium (to avoid possible influence by serum factors),
while the lower chamber containing the macrophages was filled with normal (complete) medium.
Incubation lasted 24 h (created with BioRender). (D) After 24 h of co-culture, migrated HCT116
and HT29 cells were imaged in random fields using an Axioscan 7 microscope (scale bar = 50 um,
magnification = 20x). Representative images for each condition are shown, along with a quantification
of migrated cells, presented with standard deviation (statistical significance: ** p < 0.01).
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The impact of different macrophage phenotypes on cancer cell migration was fur-
ther investigated. In this setup, cancer cells were plated in the upper compartment,
while macrophages differentiated as described above were seeded in the lower compart-
ment of the Transwell system (Figure 5C). After 24 h, the number of cancer cells that
migrated through the porous membrane was quantified. Co-culture with inflammatory
macrophages differentiated with the CM from cancer cells pre-cured with LpOCO01-SN
significantly reduced the migration of HCT116 and HT29 cells compared to co-culture with
M2 macrophages obtained from incubation with the CM of untreated CRC cells (Figure 5D).

These results suggest that M2-like macrophages, which are more likely to pro-
mote a pro-tumoral environment, enhance cancer cell proliferation and migration, while
macrophages with a more inflammatory phenotype inhibit these processes.

4. Discussion

The tumor mass exists within a complex microenvironment that includes cancer cells
as well as stromal components such as fibroblasts, endothelial cells, immune cells, and
adipocytes. These stromal cells engage in active communication with cancer cells through
the exchange of soluble factors, including cytokines, chemokines, and growth factors,
establishing bidirectional interactions. This dynamic crosstalk can drive stromal cells to
adopt more aggressive and malignant phenotypes, contributing to tumor growth. As a
result, the tumor microenvironment (TME) is increasingly recognized as a critical player in
tumor initiation, progression, and metastasis [9].

In colorectal cancer (CRC), intestinal macrophages are the predominant immune cells
infiltrating the tumor [41]. In their resting state, these macrophages exhibit an unpolarized
MO-like phenotype [42]. However, signals from the TME, particularly those secreted by
cancer cells, influence macrophage polarization, promoting them toward either a classi-
cally activated M1-like phenotype or an alternatively activated M2-like phenotype [15].
Additionally, the gut microbiota closely interacts with macrophages, shaping their behavior
within the TME, further influencing tumor growth [3]. The interplay between immune
cells, microbiota, and cancer cells significantly affect the development and progression
of CRC [43].

Here, we investigated the effect of the Lactiplantibacillus plantarum OCO1 supernatant
(LpOCO01-SN) on the secretome of CRC cells and how this secretome would impact macrophage
polarization. Understanding how these probiotic metabolites alter the secretome is crucial, as
these modifications can significantly affect the TME, potentially slowing tumor growth and
dissemination. Of note, one of the key processes influenced by the cancer secretome is the
polarization of macrophages into tumor-associated macrophages (TAMs).

In the TME, TAMs predominantly adopt an M2-like phenotype. This polarization is
driven by the abundance of anti-inflammatory cytokines, such as IL-4 and IL-10, which
promote macrophage conversion into the M2 phenotype. Additionally, the metabolic
landscape of the TME plays a significant role, with lactate being a driver of M2 pheno-
conversion [44]. M1 and M2 differ also in terms of energetic metabolism, with the former
showing predominantly aerobic glycolytic metabolism and low production of ATP (thus
relying on the availability of a huge amount of glucose) while the latter exploits at best the
mitochondrial respiration [42]. Cancer cells predominantly utilize glucose through aerobic
glycolysis to support their rapid proliferation, thereby limiting glucose availability for
other cells. Consequently, macrophages within the TME lack glucose and rely on oxidative
phosphorylation for energy production, which supports their M2 polarization. Addition-
ally, cancer cells release lactic acid in the TME that further contributes to maintaining the
M2 phenotype. Together, these conditions create an immunosuppressive environment that
facilitates tumor progression and immune evasion [17].
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Our study assessed the expression of NLRP3 to evaluate whether the macrophages
polarized by CRC cells” conditioning medium (CM) exhibited a pro-inflammatory or anti-
inflammatory phenotype. Our results demonstrated that treating MO macrophages with
HCT116 and HT29 CM significantly reduced the levels of both NLRP3 and reactive oxygen
species (ROS). However, when the macrophages were incubated with the CM from cancer
cells that had been pre-treated with LpOCO01-SN, we observed a marked increase in NLRP3
and ROS levels. These findings suggested a differential inflammatory state, with a shift
toward a more inflammatory phenotype in the latter scenario. This shift in macrophage
inflammatory status appeared to be closely linked to alterations in the TME, particularly
in the secretome of CRC cells. We have previously shown that LpOC01-SN could contrast
the growth of CRC cells, both in 2D- and 3D-spheroid cultures, along with the induction
of autophagy [27]. It is likely that the (48 h) exposure to the LpOC01-SN downregulates
the glucose metabolism and alters the proteome in CRC cells so that their conditioned
medium is poor in lactic acid and still rich in glucose. Such conditioned medium is
then able to impact the metabolism of the macrophages shifting their polarization into
an M1-like phenotype characterized by aerobic glycolysis and consequent mitochondrial
dysfunctioning, with the production of ROS and activation of the inflammasome.

To define the polarized phenotype, we analyzed the expression of CD206 and CD163,
surface markers characteristic of M2c macrophages [17]. These markers were significantly
elevated when macrophages were incubated with CM from untreated cancer cells, in-
dicating a pronounced M2c polarization. Conversely, the incubation with the CM from
LpOCO01-SN precured CRC cells led to a notable decrease in CD206 and CD163 expression in
macrophages, supporting that Lactiplantibacillus plantarum OCO01 metabolites modified the
TME by altering the cancer cell secretome. The M2c macrophages are known to be strongly
induced by TGF- [16,17]. Notably, the treatment with LpOCO01-SN induced a reduction in
TGEF-B (not other cytokines) levels in both HCT116 and HT29 cells. This decrease in TGF-f3
likely played a pivotal role in modulating macrophage polarization, specifically reducing
the M2-like phenotype.

In summary, these findings underscore the capacity of the CRC cell secretome to induce
an M2c-like phenotype in macrophages, driven in part by TGF-f3. Precuring cancer cells
with the probiotic reduced TGF-3 levels and mitigated the M2c polarization, highlighting a
critical interplay between the secretome of cancer cells and macrophage behavior. It should
be noted that in our experimental setting, we attempted to reproduce in vitro the spatial
relationship between the probiotics (which are administered orally and therefore are in
contact with the epithelial mucosa) and the tumor cells that protrude into the lumen (and
therefore are in contact with the intestinal microbiota and metabolites) while they also grow
in the deeper layer of the extracellular matrix where they come into contact with stromal
cells, including macrophages.

The anti-inflammatory phenotype of M2-like macrophages, particularly M2c, is widely
associated with tumor-promoting activities, whereas a more inflammatory phenotype is
linked to anti-tumor functions. By mimicking the in vivo interactions between cancer
cells and TAMs, we further investigated these functional differences, establishng a co-
culture system using transwells. This approach allowed us to evaluate how macrophages
with distinct polarization states and inflammatory status impact tumor progression. In
agreement with our previous findings, macrophages exhibiting an M2c-like phenotype,
induced by the CM from untreated cancer cells, promoted cancer cell proliferation, as
indicated by the reduced expression of p21 and increased expression of Ki67, and can-
cer cell migration, as indicated by the greater number of cells that migrated through the
transwell. Conversely, macrophages with a more inflammatory phenotype, induced by
CM derived from Lactiplantibacillus plantarum OCO01-pre-treated CRC cells, displayed the
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opposite effect on cancer cells repressing cell proliferation, as indicated by the increased
expression of p21 and decreased expression of Ki67, and cell migration. Macrophages
are known to change their phenotype (and metabolism) quite rapidly to adapt the
TME conditions, depending on the availability of nutrients, metabolites and cytokines
(e.g., glucose, lactate, TGEf, etc.). In our co-culture system, the macrophages maintained
their activity during the 24 h of incubation in normal medium, suggesting that they could
retain the acquired phenotype even in the absence of CRC secretion. This was confirmed
with the CM from HT-29 cells, where the changes in TGF3 were more pronounced, by
assessing the expression of specific macrophage subtype markers (Figure S1). However, we
did not test whether the acquired phenotype of the macrophage lasts for a longer time in
the absence of the external stimuli. Another limitation of the present study is that we have
not yet identified the bioactive metabolites in the LpyOCO01 supernatant responsbile for such
beneficial effects, though likely butyrate is one of the main candidates as suggested by our
previous work [27,29]

Overall, our results suggest that Lactiplantibacillus plantarum OCO01 metabolites may
modulate the cytokine secretion pattern of CRC cells, potentially driving macrophages
toward a more pro-inflammatory state. This modulation could counteract the immune-
suppressive signaling within the TME, offering a promising approach to altering
macrophage polarization. Here, we have shown that macrophages polarized toward a
pro-inflammatory phenotype contrast the growth and migration of CRC cells. The reduced
secretion of TGF{ and of lactate by LpOCO01-SN-precured CRC cells is likely responsible
for the shift toward a more inflammatory macrophage profile, potentially aligning with
an M1-like phenotype or an intermediate phenotype between M1 and M2, such as M2b.
M2b macrophages are known to be induced by IL-13 or LPS and express markers such as
IL-10, IL-1 receptor, TNF-«, and M1 marker CD86 [45]. These macrophages are typically
associated with a more balanced immune response, favoring a more pro-inflammatory
environment within the TME. However, further investigation is required to definitively
classify this phenotype and elucidate the precise mechanisms involved in macrophage
polarization and activation.

In conclusion, this study highlights the potential of probiotic metabolites as an adju-
vant therapy for CRC. By focusing on their ability to influence the TME, specifically through
modulating the polarization and activation of TAMs, we aimed to uncover novel strategies
to counteract immune suppression. Considering the critical role of the gut microbiota in
CRC progression and treatment outcomes, these findings provide valuable insights into
how probiotics can restore eubiosis, suppress tumor growth, and enhance the efficacy of
conventional therapies. We propose the continuous administration of probiotics as adjuvant
therapy in CRC to ensure that beneficial effects on the TME are maintained. Ultimately, this
research contributes to the development of more effective, personalized approaches to CRC
management by addressing both the microbiota and immune components of the TME.

Supplementary Materials: The following supporting information can be downloaded at:
https:/ /www.mdpi.com/article/10.3390 /biomedicines13020339/s1, Figure S1: Macrophages re-
tained an M2 (pro-tumorigenic) or M1-like (pro-inflammatory) phenotype after 48 h of incubation
with conditioning medium from untreated HT29 or LpOCO01-SN precured HT29 cells, followed by an
additional 24 h incubation in normal medium.
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