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Abstract: Age-related macular degeneration (AMD) is one of the major causes of blindness in elderly
populations. However, the dry form of AMD has lack of effective treatments. The fruits of Aronia
melanocarpa are rich in anthocyanins. In this study, the protective effects of aronia fruit extract on
rat retina were investigated using a NaIO3-induced dry AMD model. Full-field electroretinograms
(ERGs) showed that b-wave amplitudes were significantly decreased and the retina structures were
disordered in the model. The extract treatment alleviated the injuries. The b-wave amplitudes
increased 61.5% in Scotopic 0.01ERG, 122.0% in Photopic 3.0ERG, and 106.8% in Photopic 3.0 flicker;
the retina structure disorder was improved with the thickness of outer nuclear layer increasing by
44.1%; and the malonaldehyde level was significantly reduced in extract-treated rat retinas compared
to the model. The proteomics analysis showed the expressions of five crystallin proteins, α-crystallin
A chain, β-crystallin B2, β-crystallin A3, α-crystallin B chain, and γ-crystallin S, which protect retina
ganglion cells, were increased by 7.38-, 7.74-, 15.30-, 4.86-, and 9.14-fold, respectively, in the extract
treatment compared to the control, which was also confirmed by immunoblotting. The results suggest
that aronia fruit extract, probably due to its anthocyanins, could protect the rat retina by alleviating
oxidative damages and by upregulating the crystallin proteins to protect its nerve system.

Keywords: age-related macular degeneration (AMD); anthocyanidin; antioxidant effect; crystallin
proteins; secondary degeneration

1. Introduction

Age-related macular degeneration (AMD) is known as a progressive blinding disease.
There are over 170 million people suffering from the AMD globally [1].

While current treatment is effective for the neovascular or “wet” form of AMD, no
therapy is successful for the non-neovascular or “dry” form [2]. Dry AMD accounts for
approximately 90% of the total number of people with this vision-threatening condition [3].
It is essential to develop a method to prevent the occurrence and development of dry AMD.

The characters of AMD development include progressive macular degeneration
caused by oxidative damage of the retinal pigment epithelium (RPE), which is associ-
ated with the degeneration of photoreceptors [4–6]. Research on the mechanisms of AMD
suggests that the major damages of the disease are due to oxidative stress/damages to the
RPE [4–6]. Therefore, some studies on the treatments of AMD focus on the suppression
of oxidative stress using high doses of antioxidant vitamins and zinc supplements [7,8].
There are studies suggesting that AMD could also lead to damages in the nerve system of
retina. A clinical research result showed a 47% loss of ganglion cell layer (GCL) neurons
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at the end-stage cases of exudative age-related macular degeneration (EXAMD) [9]. Reti-
nal ganglion cell (RGC) death has also been observed in a rodent model after an almost
complete loss of photoreceptors [10].

The RGCs are the afferent neurons of the retina, and through their axons in the optic
nerve the visual information is sent to the retinorecipient nuclei in the brain for further
analysis. Many researchers have shown that partial optic nerve transection (ponT) to
the retina of rats can lead to the over production of reactive oxygen species (ROS) and
changes in mitochondrial morphology and function [11,12]. However, at a longer term
after ponT, a secondary RGC degeneration is observed, including swelling in myelinated
axons and myelin sheath thickening, which could then lead to visual dysfunction [12,13].
Previous studies have shown that alpha and beta crystallins could enhance the survival
of RGCs after optic nerve injury [14,15]. A recent study using 2D fluorescence difference
gel electrophoresis (DIGE) followed by mass spectrum (MS) on the protein expression in
RGCs after partial ponT found that in the RGCs of the non-injury region, the expression of
six crystallin proteins were dramatically upregulated compared with the injured region
after eight weeks [16]. This suggests that these crystallin proteins may protect the RGCs
from secondary degeneration.

One study showed that bilberry anthocyanins have a protective effect against light-
induced oxidative damages in rabbit retina [17]. The anthocyanidin has been reported to
have antioxidant activity and could scavenge radicals [18] and has a protective effect on
the retina against damages caused by AMD [19]. Studies on anthocyanidin have shown
that it could prevent the damage of RPE from oxidative stress by decreasing intracellular
ROS [20]. However, most of these studies are focused on cells rather than animals.

The fruits of aronia (Aronia melanocarpa) contain high levels of anthocyanidin, which
is considered to be the major “effective constituent” for anti-oxidative activity [21]. The
rat model is classical for the study of AMD induced either by sodium iodate (NaIO3) or
intense light [17,22]. In this study, sodium iodate (NaIO3), which is widely used to simulate
the damages during progressive AMD [23–25], was used to treat the rats as an AMD
model to create oxidative stress in the rodent model to induce RPE and photoreceptor
oxidative damage/cell death. We investigated the protective effect of aronia fruit extract on
NaIO3-treated rat retina and analyzed its function on preventing the RGCs from secondary
degeneration by measuring the expression of the above-mentioned crystallin proteins in
rat retina.

2. Materials and Methods
2.1. Animals

All animals used for experiments in this study were prepared under the procedures
according to the Association for Research in Vision and Ophthalmology (ARVO) Statement
for the use of Animals in Ophthalmic and Vision Research. Protocols used in this study have
been reviewed and approved by the Animal Ethics Committee of the Institute of Medicinal
Plant Development (No. SLXD-20201218031). Male Sprague-Dawley (SD) rats 180–200 g
were provided by the National Institutes for Food and Drug Control (Beijing, China). The
animals were kept at 22 ◦C and in 12 h/12 h of light/dark cycle condition for a week before
being used for experiments.

2.2. Aronia Fruit Extract

The Aronia fruit extract used in this study was the purplish red powder purchased
from the Greater Hinggan Gebei Frigid Zone Biotechnology Co., Ltd. (Heilongjiang, China).
The powder contains 10% starch (exogenously added during preparation of the powder),
10.3% anthocyanidin, and other water-soluble nutrients including saccharides, proteins,
and dietary fiber from the fruits of Aronia melanocarpa.
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2.3. Evaluation of Protective Effect of Anthocyanidin against NaIO3-Induced Retinal Damage
in Rats

A total of 36 SD rats were randomly separated into 3 groups (NOR, MOD, and AC
groups), 12 rats each group. In AC group, aronia fruit extract in distilled water was
administrated orally once a day using a stomach tube at an equivalent anthocyanidin
concentration of 60 mg/kg body weight (the amount of Aronia fruit extract powder is
600 mg/kg body weight) for 28 days. A single treatment of NaIO3 at 30 mg/kg body
weight was intravenous injected to the rats of this group on day 8 after the start of feeding
aronia water extract.

Distilled water at equivalent amount of aronia fruit extract solution was given orally
to the rats of the other two groups. In MOD group, rats were injected with NaIO3 at
30 mg/kg body weight on day 8. This established the dry AMD model. In the NOR group,
rats were orally administrated with distilled water without other treatment. On day 29, all
rats were collected for experiments (Figure 1).
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Figure 1. Schematic diagram for the treatment of rats with NaIO3 and aronia fruit extract. Thirty-six SD rats were randomly
separated into three groups (NOR, MOD, and AC), twelve rats each group. NOR: control without treatment; MOD: damage
model by 30 mg/kg body weight NaIO3 tail vein injection; AC: anthocyanidin (60 mg/kg body weight) treatment of the
damage model.

2.4. Electroretinograms

The full-field electroretinograms (ERGs) of rats from each group were recorded using
an ERG recording system (D430 Diagnosis, USA). Before the measurement of ERG, the
rats were dark-adapted for 24 h [26]. A mixture of ketamine hydrochloride and xylazine
hydrochloride at the dosages of 100 mg/kg and 15 mg/kg, respectively, was intramus-
cularly injected to induce anesthesia of the rats. Eye drops containing 0.5% tropicamide
and 0.5% phenylephrine hydrochloride were administered to the eyes of rats for 20 min to
dilate the pupils. Light-emitting diodes (LED) electrodes were placed on both corneas. An
identical reference electrode was placed under the middle scalp, and a ground electrode
was placed subcutaneous of both lower limbs of tested rats. ERGs of Scotopic 0.01ERG,
Scotopic 3.0ERG, Scotopic 3.0 oscillatory potentials, Photopic 3.0ERG, and Photopic 3.0
flicker were conducted. Both peak times and amplitudes of a- and b-waves were recorded,
and the b-wave amplitudes were statistically analyzed. Twelve samples from each group
of rats were measured.

2.5. Hematoxylin and Eosin (H&E) Staining of the Retina

Both eyes of rats in each group were removed after euthanasia. The eyeballs were enu-
cleated and fixed in 4% paraformaldehyde containing 20% isopropanol, 2% trichloroacetic
acid, and 2% zinc chloride at room temperature for 2 h. After removing the cornea, iris,
crystalline lens, and partial vitreous body, the remaining part of the eyes were dehydrated
with alcohol for 24 h and then embedded in paraffin. The whole retina samples were cut
into 4-µm-thick sagittal sections, and stained with H&E. For each section, digitized images
of the entire retina were taken with a digital camera (Leica DMi8, Wetzlar, Germany) at
200× magnification. The thickness of the outer nuclear layer (ONL) was measured with
Image J software (US National Institutes of Health, Bethesda, MD, USA). Twelve locations
for each retinal section were measured, starting from either side of the optic nerve, with
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each segment 0.5 mm apart. The 12 measurements were averaged for the mean ONL
thickness [27].

2.6. Measuring Malondialdehyde (MDA)

Venous blood was collected from rats of each group and centrifuged with a bench top
centrifuge (Eppendorf, Hamburg, Germany) at 3000 rpm for 10 min, and the supernatant
of each sample was used for MDA concentration measurements. The retina samples taken
from the eyeballs of each group of rats were homogenated with phosphate buffer saline
(PBS, pH 7.4) and centrifuged at 3500 rpm/min for 10 min, and the supernatant was
collected for MDA measurement. The MDA level in the supernatant of each sample was
determined spectrophotometrically at the wavelength of 532 nm using the measuring kit
(Nanjing Jiancheng Bioengineering Institute, Nanjing, China, #20210304). Eight samples
were detected from each group of rats.

2.7. Mass Spectrometry Analysis of Retina Proteins

Rat retina proteins were identified and analyzed using tandem MS following the
previous protocol [28]. Three retina samples from each group of rats were prepared. The
retina tissues from each group were lysed by sonication in 8M urea buffer. After digested
with trypsin, the peptides were analyzed on an Orbitrap Q Ex-active HF mass spectrometer
coupled with an online EASY-nLC 1200 nano-high-performance liquid chromatography
(HPLC) system (Thermo Fisher Scientific, Waltham, MA, USA). The peptide mixtures were
separated on a reversed-phase nano-HPLC C18 column (precolumn: 0.1 × 20 mm, 3 µm;
analytical column: 0.15 × 120 mm, 1.9 µm) at a flow rate of 600 nL/min with a 78-min
gradient: 6 to 9% solvent B for 2 min, 9 to 13% for 8 min, 13 to 26% for 40 min, 26 to
38% for 20 min, 38 to 100% for 1 min, and 100% for 7 min (solvent A, water; solvent B,
acetonitrile; 0.1% formic acid). The electrospray voltage was 2.2 kV. Peptides were analyzed
by data-dependent MS/MS acquisition mode with a resolution of 120,000 at full-scan mode
and 15,000 at MS/MS mode. The full scan was processed in the Orbitrap from mass/charge
ratio 250 to 1800; the top 20 most intense ions in each scan were automatically selected
for higher-energy collisional dissociation (HCD) fragmentation with normalized collision
energy of 32% and measured in Orbitrap. Typical mass spectrometric conditions were as
follows: Automatic gain control targets were 3 × 106 ions for full scans and 2 × 105 for
MS/MS scans; the maximum injection time was 35 ms for full scans and 80 ms for MS/MS
scans; and dynamic exclusion was used for 18 s. Each sample was analyzed with one
technical replicate because of the limited sample volume. Target protein expression in each
group of rats was determined by average the measurements of 3 retina samples from each
group. The mass spectrometry results were analyzed and quantified using PEAKS Studio
(Waterloo, ON, Canada).

2.8. Immunoblotting

The proteins of retina tissues were extracted with NETN buffer (50 mM Tris-HCl, pH
8.0, 150 mM NaCl, 0.2% Nonidet P-40, and 2 mM EDTA), and 20 µg proteins of each sample
were separated on 12% SDS-PAGE. After electrophoresis, the proteins were transferred
onto polyvinylidene fluoride membranes. The membrane was washed with 5% skimmed
milk in Tween/Tris-buffered saline (TBST) to block nonspecific binding and then incubated
with primary antibodies against α-crystallin A chain and γ-crystallin S. Immunoblots were
performed using SuperSignal Western Pick Plus (#34577, Thermo Scientific) [29].

2.9. Statistical Analysis

Results are presented as the mean ± standard deviation. Differences between groups
were assessed by one-way ANOVA, followed by Tukey’s test or Kruskal–Wallis nonparametric
test, and then by Dunn’s test. p < 0.05 was considered statistically significant. All statistical
analyses were performed using Prism 8.0 (GraphPad Software, San Diego, CA, USA).
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3. Results
3.1. Aronia Fruit Extract Protection of Rat Retina from the Damage Caused by NaIO3

Full-field electroretinography is an objective measure of overall retinal function. ERG
is an electrical response of the retina to photic stimulation. A flash of light or bright
appearance elicits a biphasic negative/positive waveform. The a-wave originating in the
receptor level of rods and cones is the initial large negative wave. The b-wave originating
in the mid-retina is the following large positive component. Systemic metabolic disorders
usually reduce ERG b-wave amplitudes, particularly the scotopic dim flash ERGs [30,31].

Five different electrical currents in the rat retina of each group were measured accord-
ing to the ISCEV (International Society of Clinical Electrophysilological Vision) standard.
The results showed the ERG b-wave amplitudes for all five different measurements were
significantly decreased in the MOD group (p < 0.01, Figure 2), compared with those in the
NOR group. This indicated a serious damage on the rat retina of the MOD group. The
decrease of ERG b-wave amplitudes in Scotopic 0.01ERG, Photopic 3.0ERG, and Photopic
3.0 flicker of the AC group was reduced compared to the MOD group (p < 0.05, Figure 2B).
According to the ISCEV Standard, Scotopic 0.01ERG indicates a rod-driven response of
bipolar cells, Photopic 3.0ERG indicates responses of the cone system, b-wave comes from
On- and Off-cone bipolar cells, and Photopic 3.0 flicker is a sensitive cone-pathway-driven
response. The results suggested that the damage of retina induced by NaIO3 was alleviated
in the AC group, and aronia fruit extract showed a potential protective effect on rat retina,
especially on cone system.

The pictures stained with the H&E of rat retina show that the NOR group has a clear
retina structure and layers, and the cell nuclei were neatly aligned. In the MOD sample, the
retina showed a disordered structure, and a reduction of cell layers with a messed outer and
inner nuclear layer (ONL and INL). In comparison, the AC group showed an improvement
on its retina structure and cell layers, the alignment of their nucleus was relatively in order
compared with the MOD group (Figure 3A). The NaIO3 treatment dramatically reduced
the thickness of ONL, suggested a progressive ONL thinning. However, the administration
of aronia fruit extract can reduce the damage by NaIO3 and maintain the ONL thickness
(Figure 3B).

3.2. Antioxidative Effect of Aronia Fruit Extract Treatment on the Rat Retinas and Serum

Malonaldehyde (MDA) is a peroxidative product of polyunsaturated fatty acids, and
has been widely used as a “biological marker” for measuring oxidative stress [32]. As
shown in Figure 4A, the MDA level in the rat retina of NOR group was 2.45 ± 0.19 nmol/mg.
NaIO3 treatment significantly increased the MDA level to 3.87 ± 0.74 nmol/mg, while the
aronia fruit extract treatment significantly reduced the MDA level to 1.88 ± 0.12 nmol/mg
in the rat retina (p < 0.01, Figure 4A).

The MDA concentrations in the rat serum of the NOR, MOD, and AC groups were
8.18 ± 1.12, 7.31 ± 1.53, and 4.27 ± 1.09 nmol/mL, respectively (Figure 4B). There is
no statistical difference between the MOD and the NOR groups, while the serum MDA
level of AC group is significantly lower than that of the MOD and NOR groups (p < 0.05,
Figure 4B). These results suggested that NaIO3 treatment caused more oxidative stress
in the rat retina but not in rat serum, and the administration of aronia fruit extract could
reduce the oxidative stress in both the retina and blood of rats.
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3.3. Effect of Aronia Fruit Extract Treatment on the Expression of Crystallin Proteins in Rat Retina

A group of six crystallin proteins has been suggested to have certain effects on preventing
the secondary degeneration of RGCs in the retina of rats [16]. To investigate the potential
effects of aronia fruit extract on rat RGCs, the total protein expressed in the retina samples were
analyzed. The results showed that five proteins of the above mentioned crystallin proteins
were slightly increased in the rat retina of the MOD group. The expression of α-crystallin
A chain (αA), β-crystallin B2 (βB2), β-crystallin A3 (βA3), α-crystallin B chain (αB), and
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γ-crystallin S (γS) increased 1.48-, 1.43-, 1.84-, 1.17-, and 1.56-fold, respectively, in the MOD
group compared with the NOR group (p > 0.05, Figure 5A). However, in the retina samples
of the AC group, a much higher expression of these crystallin proteins were observed. In
the AC group, the expression of five crystallin proteins, αA, βB2, βA3, αB, and γS, were
increased by 7.38-, 7.74-, 15.30-, 4.86-, and 9.14-fold, respectively, compared to the NOR group
(p < 0.05, Figure 5A). The results suggest that aronia fruit extract treatment led to a much
higher upregulation of the protective crystallin proteins in the stressed condition.
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Figure 5. Expression of crystallin proteins in the rat retina. (A) Expression of α-crystallin A chain (αA), β-crystallin B2 (βB2),
β-crystallin A3 (βA3), α-crystallin B chain (αB), and γ-crystallin S (γS) determined by mass spectrometry. The amount of
each protein expressed in No.1 sample in NOR group (NOR-1) was set to be onefold, and the amount of crystallin proteins
expressed in other samples were expressed as the ratio of NOR-1. Data shown are the mean ± standard deviations (n = 3).
(*) p < 0.05 (Kruskal–Wallis test followed by Dunn’s test). (B) Immunoblotting results showing the presence of α-crystallin
A chain and γ-crystallin S in retina sample. The protein histone H2B in each sample was measured as an internal reference
to show a basic protein expression in each sample.

The amounts of αA and γS in rat retina were detected using immunoblotting. As
shown in Figure 5B, both αA and γS were not detected in the NOR group. Very low
amounts of the two proteins were detected in the MOD group. However, αA and γS had a
significantly higher expression in the rat retina of the AC group, compared to the MOD
group. The results confirmed the mass spectrum results shown in Figure 5A.

4. Discussion

The fruit of Aronia melanocarpa is one of the most abundant sources of anthocyanin,
the content of which is up to 460 mg/100 g fresh aronia fruits [33]. In a visible-light-
induced retinal degeneration models in pigmented rabbits, the oral administration of
bilberry anthocyanins (BAE) had been reported to alleviate the decreasing of ERG b-wave
and suppressed the thinning of ONL, and the protective effect was associated with the
antioxidative activity [17]. In our results, the alleviation of ERG b-wave decreased together
with the suppression of cell layers disorder and ONL thinning were observed in the rats
of the AC group treated with aronia fruit extract in comparison with the MOD group
(Figures 2 and 3). Anthocyanidin is a group of polyphenolic compounds, and its anti-
oxidative activity associated with therapeutic effects in human health have been widely
proved [18,20]. The protective effects of aronia fruit extract on the rat retina observed in
our ERGs and H&E staining experiments are very likely due to the anti-oxidation activity
of anthocyanins. However, we noticed that the protective effects of aronia fruit extract
treatment in our study were not as significant as in the previous reports, in which they
used 30 to 300 mg/kg body weight of anthocyanidin, proanthocyanidin, or polyphenols
in murine retinal degeneration models. The protective effect of anthocyanindin on the
retina is dosage-dependent, and its optimal dosage may be about 100 mg/kg [17,34–36].
Increasing the dosage of anthocynidin may have better results.
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The oxidative damage of the RPE associated with the degeneration of photoreceptors
is usually considered to be the characters of AMD development [4–6]. Some researchers
showed that the nerve system in rat retina could be damaged after the complete loss of
photoreceptors [10]. Since the degeneration of photoreceptors is usually considered as
a common feature associated with AMD [4–6], the RGC death may be suggested as a
“secondary” damage of AMD. In the recent study, ponT to the retina of rats has discovered
that the upregulation of a group of crystallin proteins including the αA, αB, βA2, βA3, β
B2, and γS has a more protective effect on RGCs against secondary degeneration rather
than primary degeneration. It was reported that the expressions of the αB and βA2
crystallins were only increased 1.4- and 1.2-fold in the injured region, respectively, while
they were increased 3.5- and 2.1-fold of these proteins in the non-injured region [16]. A
more significant upregulation of crystallin proteins has been observed in our experiment.
In the AC group treated with aronia fruit extract, five crystallin proteins including the αA,
βB2, βA3, αB, and γS were up-regulated 7.38-, 7.74-, 15.30-, 4.86-, and 9.14-fold, respectively
(Figure 5A), which suggested that the administration of aronia fruit extract may protect
the nerve system of rat retinas from the secondary degeneration. Another observation in
our experiments is that the expression of these five crystallin proteins were also slightly
upregulated in the NaIO3-treated MOD group, although there was no statistical difference
between the MOD and NOR groups (Figure 5A). These observations were also consistent
with our immunoblotting results, which measured the amount of αA and γS in retina
samples from each group of rats (Figure 5B). This may suggest that the expression of
crystallin proteins is likely to be an innate protective mechanism which protects rat retina
nerve cells from secondary degeneration.

The detailed mechanisms for the upregulation of crystallin proteins involving in the
suppression of retina nerve system from secondary degeneration remains unknown. Since
the crystallin proteins are known as the members of the chaperon protein family, they are
usually considered as a part of the protein quality control system in cells and ensuring that
“proteins are correctly folded and functional at the right place and time” [37–39]. Therefore,
one potential protective mechanism of upregulated crystallin proteins and suppressing
retina nerve cells degeneration is by regulating protein folding in rat retina. Our mass
spectrometry results also showed a downregulation of caspase-3 protein, a factor regulating
the apoptosis of RGCs [40], in the retina of the AC group compared with the MOD group
(data not shown). The decreased expression of caspase-3 suggests that aronia fruit extract
may also protect retina nerve cells from programmed cell death.

5. Conclusions

In conclusion, in this study, we successfully established the dry AMD model with
NaIO3 and found that aronia fruits extract can protect the retina by anti-oxidative activities
and upregulating the crystallin proteins expression. Therefore, we could anticipate that
supplementing with aronia fruit extract with high anthocyanidin may be an approach to
prevent AMD and other damages related to retinal degeneration.
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